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INTRODUCTION TO QUANTITATIVE RELIABILITY

· RELIABILITY RELATES TO THE ABILITY OF A   SYSTEM TO PERFORM ITS INTENDED FUNCTION
· IN A QUALITATIVE SENSE, PLANNERS AND DESIGNERS ARE ALWAYS CONCERNED WITH RELIABILITY

· WHEN QUANTITATIVELY DEFINED, RELIABILITY BECOMES A PARAMETER THAT CAN BE TRADED OFF WITH OTHER PARAMETERS LIKE COST

· NECESSITY OF QUANTITATIVE RELIABILITY:

-EVER INCREASING COMPLEXITY OF SYSTEMS

         -EVALUATION OF ALTERNATE DESIGNS

         -COST   COMPETITVENESS AND COST-BENEFIT TRADE OFF
MEASURES OF RELIABILITY

BASIC INDICES

· PROBAILITY OF FAILURE – LONG RUN FRACTION OF TIME SYSTEM IS FAILED
· FREQUENCY OF FAILURE – EXPECTED OR AVERAGE NUMBER OF TIMES PER UNIT TIME
· MEAN DURATION OF FAILURE – MEAN DURATION OF A SINGLE FAILURE 
OTHER INDICES CAN BE OBTAINED AS FUNCTIONS OF THESE BASIC INDICES
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COST  VS  RELIABILITY

SEQUENCE OF PRESENTATION

· DESCRIBE AN EXAMPLE THAT WILL BE USED TO ILLUSTRATE CONCEPTS

· INTRODUCE ANALYTICAL METHODS OF RELIABILITY EVALUATION

· INTRODUCE MONTE CARLO SIMULATION METHODS OF RELIABILITY EVALUATION

 EXAMPLE SYSTEM

Generators                                              Transmission                                        Load




Figure 1: System diagram

Data__________________________________________________________________

Generators:

Each generator either has full capacity of 50 MW or 0 MW when failed. Failure rate of each generator is 0.1/day and mean-repair-time is 12 hours.

Transmission Lines:

The failure rate of each transmission line is assumed to be 10 f/y during the normal weather and 100 f/y during the adverse weather. The mean down time is 8 hours. Capacity of each line is 100 MW.

Weather:

The weather fluctuates between normal and adverse state with mean duration of normal state 200 hours and that of adverse state 6 hours.

Breakers:

Breakers are assumed perfectly reliable except that the pair B1&B2 or B3&B4 may not open on fault on the transmission line with probability 0.1.

Load:

Load fluctuates between two states, 140 MW and 50 MW with mean duration in each state of 8hr and 16hr respectively.

FOR THE DESCRIBED SYSTEM, 

HOW CAN YOU CALCULATE THE FOLLOWING BASIC RELIABILITY INDICES ?

       1.  Loss of load probability

       2.  Frequency of loss of load

3. Mean duration of loss of load

METHODS OF QUANTITATIVE RELIABILITY ANALYSIS

· ANALYTICAL METHODS

           - STATE SPACE USING MARKOV PROCESSES

           - MIN CUT SETS

           - NETWORK REDUCTION

· MONTE CARLO SIMULATION

            - RANDOM SAMPLING

            - TIME SEQUENTIAL 
                                              Markov Processes

Using

Frequency Balance Approach

Concept of Transition Rate

Consider two system states i and j.

Transition rate from state i to j is the mean number of transitions from 

state i to j per unit of time in state i.
If the system is observed for T hours and Ti  hours are spent in state i, then the transition rate from state i to j is given by

             (ij = nij / Ti
where

             nij = number of transitions from state i to j during the     

                      period of observation




Fig. 1 Four state model

Example 1 :  A 2- state component




Fig. 2   A  2-state model

Let UP state be #1 and Down state be #2.

Transition rate from up to down state = failure rate

                                                           = n12 / T1 
                                                           = 1 / ( T1 / n12 )

                                                           = 1/ MUT

where

                                                 MUT= mean up time

Also

 Transition rate from down to up state = repair rate

                                                           = n21 / T2 
                                                           = 1/( T2 / n21 )

                                                           =1 / MDT

where

                                           MDT = mean down time of the component
Concept of Frequency
Frequency of encountering state j from state i is the expected (mean) number of transitions from state i to state j per unit time.

Fr(i(j) = steady state or average frequency of transition from state i to  j

              = nij / T

              =  ( Ti / T) (nij / Ti ) 

              = pi (ij

where

         pi   = long term fraction of time spent in state i

              = steady state probability of system state i

State transition diagram




2 State Model for a 10MW Generator




                                           Fig 5 Model for three 2-state units
Concept of Frequency Balance

In steady state or average behavior,

Frequency of encountering a state (or a subset of states) equals the frequency of exiting from the state (or the subset of states).
Example 2:

Consider the state transition diagram for three 2-state units.

Equation for state 2 can be written as,

p1  ( 1 +p 5  ( 2  + p 6   (3  = p 2 (   (1 +  (2 + ( 3 )    
Calculation of state probabilities:

If components are independent, system state probabilities can be found by the product of unit state probabilities.
If components are not independent then 

    - write an equation for each of n system states using frequency balance.

    - any n-1 equations together with

             


       can be solved to find state probabilities.
EQUATIONS  ARRANGED IN MATRIX FORM :

THE STATE PROBABILITIES CAN BE OBTAINED BY SOLVING 
 
BP = C  

 
WHERE 


B :
MATRIX OBTAINED FROM THE TRANSPOSE OF TRANSITION RATE MATRIX R BY REPLACING THE ELEMENTS OF AN ARBITRARILY SELECTED ROW k BY 1s  
R :
MATRIX OF TRANSITION  RATES SUCH THAT ITS ELEMENT ri j = λi j   
λij :
CONSTANT TRANSITION RATE FROM STATE i TO j
P :
COLUMN VECTOR WHOSE iTH TERM pi IS THE                 STEADY​STATE PROBABILITY OF THE SYSTEM BEING IN STATE i
C 
COLUMN VECTOR WITH kTH ELEMENT EQUAL TO ONE AND OTHER ELEMENTS SET TO ZERO. 
Other indices:

 Mean cycle time of an event (MCT) = 1 / frequency of the event

 Mean duration of the event  = MCT x Prob. of the event

Thus

Mean cycle time between failures = 1/ freq of failure

Mean down time (MDT) = prob of failure / freq of failure

Mean up time = MCT - MDT

                        = prob of system up / freq of failure

Frequency of a Set of States







Fig 4 Concept of set frequency

Frequency of encountering subset Y from subset X,

Fr(X ( Y) = (  pi  (    (ij
                      i(X   j(Y

Therefore freq of encountering subset X,

Fr(X) = (        pi   (    (ij
          i((S-X)      j(X

To find the frequency of a subset of states:

1. Draw boundary around the subset of states.

2. Find the expected transition rate into the boundary or out of the     boundary.

Example:

For the case of three 2-state units,

Fr(capacity ( 10) = p2 ( (2 + (3 ) + p3 ( (1 + (3 ) + p4 ((1 + (2 )

                             =p5( ( 1 + ( 2 ) +p7 ( (2  +(3) + p6 ((1  +( 3)

This frequency is typically called cumulative frequency.
                                     Equivalent Transition Rate
The equivalent transition rate from X to Y in Fig 4 is given by

(XY = Fr(X(Y) / Prob(X)
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Solving Example Problem using Markov Approach
 

1. System State Description & Equivalents

The first task is to obtain probabilities for the generators, transmission lines and loads, which are independent parts of the system.

1. 1. Generators


Figure 2: Each Generator has two possible states
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                              Figure 3: State Transition Diagram – Generator System
Merging Identical Capacity States
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Figure 4: Equivalent State Transition Diagram – Generator  System

Equivalent transition rates:
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Transition rate matrix is:
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If we substitute values for ( and ( obtained in (1) into the matrix (3), transition rate matrix for the generator system is:
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1. 2. Transmission Lines


Figure 5:  Each Transmission line has two possible states
During the normal weather 
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If all the breakers are perfectly reliable, for the two-transmission-line system, there will be 4 states.


Figure 6: Four State Transition Diagram – Transmission System

If breakers may not open on command:


Figure 7: Six State Transition Diagram – Transmission System

Merging of states:
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Figure 8: Equivalent Four State Transition Diagram – Transmission System

Equivalent transition rates:
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1.2.1
Weather


Figure 9: Equivalent Eight State Transition Diagram – Transmission System

Transition rate from normal weather to adverse weather is: 
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Transition rate from adverse weather to normal weather is: 
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Transition rate matrix of transmission system is:
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1.3
Load


Figure 10: State Transition Diagram – Load
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Transition rate matrix:
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2
Steady State Probabilities, Frequency and Mean Duration of Loss of Load

2. 1.
Generation System

In order to get the steady probability of each state, we can write:
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Using the RG we obtained in equation (4), solving equations (9), we get the steady state probability of each state. 

If generators are independent probabilities can be calculated by product rule also. 

Probabilities  calculated in either way are  the same. 
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P1G= Pu * Pu * Pu          =0.8638377      





(10)

P1G= 3*Pu * Pu * Pd    =0.1295725

P1G= 3*Pu * Pd * Pd    =0.00647876

P1G= Pd * Pd * Pd          =0.000107979
2. 2.
Transmission System

We have the following equations:
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Using the RT we obtained in equation (7), solving equations (11), we get the steady state probability of each state:


[image: image29.wmf]T

t

R

=

  1.0e+003 *

   -0.0638       1.0950        0                 1.0950        1.4600        0                  0                0

    0.0180      -1.1488        2.1900        0                 0                 1.4600         0                0

    0                 0.0100      -2.2338        0                 0                 0                  1.4600       0

    0.0020        0                0                -1.1388        0                 0                  0                1.4600

    0.0438        0                0                 0                -1.6600        1.0950         0                1.0950

    0                 0.0438       0                 0                 0.1800       -2.6550         2.1900       0

    0                 0                0.0438        0                 0                 0.1000        -3.6500       0

    0                 0                0                 0.0438        0.0200        0                  0                -2.5550

P1=0.9507726                 
(12)

P2=0.01787034

P3=0.0001196528

P4=0.0019820304

P5=0.02678843

P6=0.002162378

P7=0.000060686

P8=0.00024383

We can also reduce the eight-state transmission transition diagram given in Fig 11 to a three-state diagram with respect to the capacities of the states: 


Figure 11: Equivalent Three State Transition Diagram – Transmission System

For the reduced model, the following results apply:
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2. 3.
Load

The following equations apply:
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Using the RL we obtained in equation (8), solving equations (14), we get the steady state probability in each state:
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2. 4.
Solution for the System

Steady state probability, frequency and mean time of loss of load could be found using the following table:

P1G = 0.8638377

P1T = 0.97756103                  P1L = 0.3333333

P2G = 0.1295725 

P2T = 0.020032718                P2L = 0.6666667 

P3G = 0.00647876 

P3T = 0.0024061992

P4G = 0.000107979     

	System State
	Generation, transmission, load system state
	Probability of system state
	Transition to the states with loss of load
	Loss of load

	1
	111
	0.281485
	2,3,4
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We can calculate the probability of states having no load loss. Those probabilities are obtained for the generators, transmission lines and loads as independent.

From Table 1, we can get the steady state probability of the loss of load as follows.

P=1-(0.281485+0.562969+0.0115367+0.0844453+0.0017305+0.00422226+0.000086525)

P=0.053524715 
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The frequency of loss of load is:
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F = 95.742635 /year

Values needed for F that are calculated previously:
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The mean time of loss of load is:


[image: image58.wmf]hours

year

F

P

MD

89726

.

4

/

742635

.

95

5

0.05352471

=

=

=

    



             (17)

-Cut Set Method

· A cut set is a set of components or conditions that cause system failure.

· A min cut set is a cut set that does not contain any cut set as a subset.

· In this presentation a cut set implies a min cut set.

· The term component will be used to indicate both a physical component as well as a condition.

· Components in a given cut set are in parallel, as they all need to fail to cause system failure.

· Cut sets are in series as any cut set can cause system failure.

Frequency & Duration Equations For Cut Sets

First Order Cut Set: One component involved
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APPLICATION OF CUT SET METHOD TO EXAMPLE SYSTEM

Cut set 1: One line failure and breaker stuck.
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Cut set 2: One generator failure and load changes from 50 to 140
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Cut set 3:One line failure (breaker not stuck) and load changes from 50 to 140
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Cut set 4: Two lines fail(breaker not stuck)
For each line
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Applying the equation for second order cut set exposed to fluctuating environment,
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Monte Carlo Simulation

Introduction

· The Monte Carlo method mimics the failure and repair history of components and the system by using the probability distributions of component states. 

· Statistics are collected and indices estimated by statistical inference.

· Two main approaches: random sampling , sequential simulation. 

Random number generator:

Each number should have equal probability of taking on any one of the possible values and it must be statistically independent of the other numbers in the sequence. Random numbers in a given range follow a uniform probability density function.

Multiplicative congruential method:

Random number Rn+1, can be obtained from Rn :

Rn+1 = (a Rn ) (modulo m)

where

a,m= positive integers, a < m.

Rn+1 is the remainder when (aRn) is divided by m.

suggested values

a=455 470 314

m=231 -1 = 2147 483 647

R0 = seed

     = any integer between 1 and 2147 483 64

Range can be limited by truncation. For example if rn between 0 and 999 are required, the last three digits of the random number generated can be picked up. If rn between 0 and 1 is required, put a decimal before the rn generated.

Random sampling

Sampling a component state:

Consider a component that has probability distribution:

	State number (random variable)
	Probability



	1                                                            
	         .1

	2         
	         .2

	3
	         .4

	4                                                         
	         .2

	5
	         .1


Let us assume that the random numbers lie in the range 0 to 1. We can assign the random numbers proportional to their probability as follows:

	Random number drawn
	State sampled

	0 to.1
	1

	 .1+ to .3
	2

	.3+ to .7
	3

	.7+ to .9
	4

	.9+ to 1.
	5


So if  a rn is .56 ,then we say that state number 3 is sampled.

This procedure can be more simply carried out by using a cum prob or probability distribution function. The prob mass function and corresponding probability distribution function for this component are shown below:
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Random Observation


Now you can place the rn on the vertical axis and read the value of the state sampled on the horizontal axis. It can be seen that this is equivalent to proportional sampling.

Sampling a system state:

If a system consists of n independent components, then to sample a system state, n random numbers will be needed to sample the state of each component. For example for a system of two components with the pdfs shown above, sampling may proceed as follows. Random numbers used are found by a computer program and are shown on the next page.

	RN for component 1        
	RN for comp 2
	System state

	.946
	.601
	(5,3)

	.655
	.671
	(3,3)

	.791
	.333
	(4,3)

	.345
	.532
	(3,3)

	.438
	.087
	(3,1)

	.311
	.693
	(3,3)

	.333
	.918
	(3,5)

	.998
	.209
	(5,2)

	.923
	.883
	(5,4)

	.851
	.135
	(4,2)

	.651
	.034
	(3,1)

	.316
	.525
	(3,3)

	.965
	.427
	(5,3)

	.839
	.434
	(4,3)


Now if you want to estimate the probability of say state (3,3)

 -
P(3,3) = n/N

where

n = number of times state sampled

N = total number of samples.

From the table

 -
P(3,3) = 4/14

           =2/7

           =.286

The actual prob of (3,3) is 

      .4x.4 = .16

If this sampling and estimation are continued the estimated value will come close to .16.

You can appreciate on of the problems of Monte Carlo that the indices obtained are estimates. So one must have some criterion to decide whether the indices have converged or not.

A Sequence of Random Numbers Generated

	.946
	.308

	.601
	.116

	.655

.671
	.864

.917

	.791

.332
	.126

.157

	.345

.532
	.837

.029

	.438

.087
	.865

.603

	.311

.693
	.203

.823

	.333

.918
	.969

.509

	.998

.209
	.407

.355

	.923

.883
	.885

.931

	.851

.135
	.896

.680

	.651

.034
	.057

.922

	.316

.525
	.113

.852

	.965

.427
	.931

.538

	.839

.434
	.504

.925


                                              Sequential Simulation

Sequential simulation can be performed either by advancing time in fixed steps or by advancing to the next event.

Fixed time interval method:

This method is useful when using Markov chains,i.e., when transition probabilities over a time step are defined. This is simulated using basically the proportionate allocation technique described under sampling. This is indeed sampling conditioned on a given state. This can be illustrated by taking an example. Assume a two state system and the probability of transiting from state to state over a single step given by the following matrix:

	Initial State
	Final State



	
	0
	1

	0
	0.3
	0.7

	1
	0.4
	0.6


Starting in state 0, select a rn and the next state is determined as follows:

	digit
	event

	0 to 0.3
	stay in state 0

	0.3+ to 1.0
	transit to 1


Similarly starting in state 1,

	digit
	event

	0 to 0.4
	transit to 0

	0.4+ to 1.0
	stay in 1


Construction of a realization for 10 steps:

	Step
	RN
	State

	1
	.947
	0

	2
	.601
	1

	3
	.655
	1

	4
	.671
	1

	5
	.791
	1

	6
	.333
	1

	7
	.345
	0

	8
	.531
	1

	9
	.478
	1

	10
	.087
	1


Next event method:

This method is useful when the times in system states are defined using continuous variables with pdfs. Keeping in mind that discrete rvs are only a special case of continuous rvs ,the previously described method of reading a variable from the pdf using a rn can be used. Consider for example a rv  X representing the up time of a component and distribution

F(x) = P(X( x)

as shown in the following figure. Now if a rn between 0 and 1. is drawn, then the time to failure can be read as shown:
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Continuous distributions are approximated by discrete distributions whose irregularly spaced points have equal probabilities. The accuracy can be increased by increasing the number of intervals into which (0,1) is divided. This requires additional data in the form of tables. Although the method is quite general, its disadvantages are the great amount of work required to develop tables and possible computer storage problems. The following analytic inversion approach is simpler.

Let Z be a random number in the range 0 to 1 with a uniform probability density function, i.e., a triangular distribution function:
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Similarly
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EMBED Equation.3[image: image111.wmf]
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Let F(x) be the distribution from which the random observations are to be generated. Let

z = F(x)

Solving the equation for x gives a random observation of X. That the observations so generated do have F(x) as the probability distribution can be shown as follows.

Let ( be the inverse of F; then

x = ((z)

Now x is the random observation generated. We determine its probability distribution as follows

P(x ( X) = P(F(x) ( F(X))

              = P(z (F(X))

             = F(X)

Therefore the distribution function of x is F(X), as required. In the case of several important distributions, special techniques have been developed for efficient random sampling.

In most studies, the distributions assumed for up and down times are exponential. The exponential distribution has the following probability distribution
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where 1/( is the mean of the random variable X. Setting this function equal to a random decimal number between 0 and 1,
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Since the complement of such a random number is also a random number, the above equation can as well be written as
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Taking the natural logarithm of both sides and simplifying, we get
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which is the desired random observation from the exponential distribution having 1/( as the mean.

This method is used to determine the time to the next transition for every component, using ( or ( for (, depending on whether the component is UP or DOWN. The smallest of these times indicates the most imminent event, and the corresponding component is assigned a change of state. If this event also results in a change of status, (e.g., failure or restoration) of the system, then the corresponding system indices are updated.
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The procedure can be illustrated using an example of two components with data as given below.

	Component
	( (f/hr)
	( (rep/hr)

	1
	.01
	.1

	2
	.005
	.1


	Time
	Random Number for Component
	Time to change
	Component state

	
	1
	2
	1
	2
	1
	2

	
	
	
	
	
	
	

	0
	.946
	.601
	5 (
	101
	U
	U

	5
	.655
	-
	0/4 (
	96
	D
	U

	9
	.670
	-
	0/40 (
	92
	U
	U

	49
	.790
	-
	0/2 (
	52
	D
	U

	51
	.332
	-
	0/110
	50 (
	U
	U

	101
	-
	.345
	60
	0/11 (
	U
	D

	112
	-
	.531
	49 (
	0/127
	U
	U

	161
	.437
	-
	0/8 (
	78
	D
	U

	169
	.087
	-
	0/244
	70 (
	U
	U

	239
	-
	.311
	174
	0/12 (
	U
	D

	251
	-
	.693
	162
	0/73 (
	U
	U

	324
	-
	.333
	89
	0/
	U
	D

	
	
	(
	
	
	
	


(  indicates time causing change and is added to obtain the total time.
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