Module 1 Quantitative Reliability Analysis

Chanan Singh
Texas A&M University

- Reliability relates to the ability of a system to perform its intended function
- Qualitative vs. quantitative concept of reliability.
- When quantitatively defined, reliability becomes a parameter that can be traded off with other parameters like cost
- Necessity of quantitative reliability: decision making
 - Ever increasing complexity of system design and operation
 - Evaluation of alternate design proposals
 - Cost competitiveness and cost-benefit trade off

Discussion Questions

- WE HAVE A LOAD OF 500 MW
- WHICH OF THE FOLLOWING ALTERNATIVES IS THE BEST CONSIDERING COST AND RELIABILITY?
 - 5 GENERATORS 100 MW EACH

- 6 GENERATORS OF 100 MW EACH

-12 GENERATORS OF 50 MW EACH

Standby Power

- Basic indexes
 - Probability of failure
 Long run fraction of time system is failed
 - Frequency of failure
 Expected or average number of failures per unit time
 - Mean duration of failure
 Mean duration of a single failure
- Other indexes can be generally obtained as a function of the above.

Up Times		Down Times	Cycle Time
U_1	= 100 h	$D_1 = 10 h$	110
U_2	= 50 h	$D_2 = 5 h$	55
U_3	= 80 h	$D_3 = 6 h$	86
U_4	= 90 h	$D_4 = 4 h$	94
Total= 320 h		25h	320+25=345

Estimate of probability of failure = 25/(320+25) = .072

Estimate of frequency of failure (FF) = 4/345 = .011594 f/h=101.56 f/y

Estimate of mean down time(MDT) = 25/4 = 6.25 h

Estimate of mean up time(MUT) = 320/4=80 h

Estimate of mean cycle time= 86.25 h=MUT+MDT=1/FF

Basic Approaches to Reliability Considerations

- Reliability implemented as a constraint
- Reliability worth included in overall cost optimization
- Multi-objective optimization with reliability as one of the objectives

Cost VS Reliability

- Reliability worth
 assessment provides the
 opportunity to incorporate
 cost analysis in system
 design.
- Two approaches:
 - As an objective: Achieve minimum total cost, which is the sum of investment, operating and customer interruption/failure costs.
 - As constraint: Expected power interruption or cost associated with failure is less than a pre-selected value.

$$IC = \sum_{i=1}^{n} L_i \cdot \lambda_i \cdot c_i(d_i)$$

n : the number of load points

Li : load requirement [kW]

 λ_i : failure frequency [f/year]

 $c_i(d_i)$: customer damage function [\$/kW]

di : outage duration [hours].

Multi-objective Optimization & Pareto-optimality

- Most problems in nature have several (very often conflicting) objectives to be satisfied or optimized.
- Multi-objective optimization (or programming) also known as multicriteria or multi-attribute optimization, is the process of simultaneously optimizing two or more conflicting objectives subject to certain constraints.
- Standard definition

```
Min \mathbf{f} = [f_1(x), f_2(x), ..., f_n(x)]
subject to x \in S (constraints)
where each f_1(x) is an objective function
```

One solution often employed is to optimize a weighted objective function
 Min f=[w₁ f₁ (x) +w₂ f₂ (x),....+w_n f_n (x)]
 subject to xe S (constraints)
 where each f₁ (x) is an objective function

 An other technique is to pick one objective as the primary objective to be optimized and transform the remaining objectives into constraints.

- In multi-objective optimization an other approach is to find Pareto-optimal solutions.
- No part of Pareto optimal solution can be improved without making some other part worse.
- This approach is useful when it is difficult to formulate a global objective function.

- **Pareto Frontier**
- See opposite the objective space of f₁ and f₂
- Given that lower values are preferred to higher values, point **C** is not on the Pareto Frontier because it is dominated by both point A and point B; and Points A and B are non-inferior.
- A vector is said to be dominated if other vectors of system variables can be found that have improved values of any function f_i without creating a lower value in any objectives in **f**.

An Example: Tradeoff Curve Between Reliability & Cost

Question Reformulated

- WE HAVE A LOAD OF 500 MW
- WHAT IS THE PROBABILITY NOT SUPPLYING THE LOAD(loss of load) IN THE FOLLOWING SCENARIOS?
 - 5 GENERATORS 100 MW EACH
 - 6 GENERATORS OF 100 MW EACH
 - -12 GENERATORS OF 50 MW EACH
- ASSUME PROBABILITY OF FAILURE OF EACH GENERATOR IS 0.1 IN ALL CASES.

References:

- C. Singh & R. Billinton, <u>System Reliability Modelling</u> and <u>Evaluation</u>, Hutchinson, London, 1977. (you can download from my website)
- 2. J. Endrenyi, <u>Reliability Modeling in Electric Power</u> <u>Systems</u>, John Wiley, 1978
- 3. R. Billinton & R. Allan, <u>Reliability Evaluation of Power Systems</u>, Plenum Press, 1984
- 4. Course Notes by C. Singh
- Selected papers