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Outline

e Random variable
Probability distribution function
Survival function
Hazard function
Exponential distribution function

e Stochastic processes

e Markov process
Transition probability
Transition rate matrix
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Stochastic Process

A collection of random variables.
X, teT}

e Discrete time process, t is discrete.
e Continuous time process, t is continuous.
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Types of Stochastic Process

Continuous RV
Continuous time process

Discrete RV
Continuous time process

Continuous RV
Discrete time process

Discrete RV
Discrete time process
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Discrete RV Discrete Time Process .
Pr{Xo=3}=0.0 Pr{X1=3}=0 Pr{X:=3} = 1 Pr{Xi1 =3}=7?
Pr{Xo=2}=0.0 Pr{X1 = 2} 1 Pr{xt=é}=o Pr{Xw1 =2} =7
Pr{Xo=1}=1.0 Pr{X1 = 1} 0 Pr{X: = 1} 0 Pr{Xt1 1} =2
@ « R
N Time

Primary interest is to determine probabillity
distribution of Xt+1.
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Discrete RV Discrete Time Process

o If
PX,=x|X,,=y,X;,=2..)=PX,, =x)

The stochastic process is said to be
independent

o If
PX,=x|X,,=v,X;,=2..)=PX,,=x|X,,=y)
The process is Markov process
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The Chapman-Kolmogorov Equation

+0o
P(X, = x|X; =2) = f_oo P(Xy = x|Xpm = y)P(Xy = y1X; = 2)dy

e This is for continuous state space and discrete time
case
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e For discrete states and discrete time, one step
transition probability is defined as
P(Xn — X|Xn—1 — :V)

e If this transition probability is independent of n
P(Xn — x|Xn—1 — y) — P(Xm — xlxm—l — y)
e The process is time homogenous and transition
probability is stationary
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e The one step transition probability from state i to
] Is denoted by p;;

Z:Pij =1
J

e |t can be represented by a transition probability
matrix P whose ijth element is the probability of
transition from state i to j in one step
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Example

A person is practicing firing. If he misses, he becomes
nervous and the probability of the next shot being a hit
reduces to 2, but a hit bolsters his confidence and the
chance of the next shot being a hit increases .

(1) If the initial shot is a hit, what is the probability of a hit
on the fourth shot?

(2) If the initial shot is a miss, what is the probability of a

hit on the fourth shot?
HNSS
(@ Q)
~__
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Example
HNSS
3 3
~__ 7

(1) If the first shot being a hit 42
p® =pOp3=11 o] %
132
(2) If the first shot being a miss_43
p® =p@p3=[o 1]|8*
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Equilibrium Distribution

In the firing practice example
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p3 _ [06719
0.6563
p6 _ [0-6667
0.6665

0.38217
0.3438-

0.3333]

0.3335.

P12=[O.6666 0.3334
0.6666 0.3334
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Equilibrium Distribution

In any Markov chain which is not cyclic the limit
— lim p( )

n—oo J

Xj =

In any a-periodic irreducible Markov chain the above limit
does not depend on the initial probability distribution so

that

—llmp()—llmp()

] n-oo J n—-oo

In a finite regular Markov chain, each row approaches a
stationary probability vector a = (ag, a4, ...)

This is called the unique stationary probability vector of

the process and
aP = «
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Equilibrium Distribution

In firing practice example

(@0 @4] =@ @a1]

| =] W
| =] =

2 2.
These two equations are identical, there fore and equation of the
following form can be used

a0+a1:1

Then
_2 _1
“0—51“1—5

It can be seen that these values could also be obtained by multiplying P
a large number of times
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First Passage Time

e One parameter of interest in many Markov Chain
problem is the time to encounter a state for the first time.
This is called the first passage time.

e If this state is an absorbing state or has been made an
absorbing state, this is called the time of absorption.

e In reliability engineering this concept is used to calculate
the mean time to first failure, MTTFF.
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First Passage Time

e lItis possible to calculate mean and variance of first
passage time by making state | and absorbing state and
applying the ehrory of absorbing chains.

e An absorbing state is one which once entered cannot be
left. The behavior of the stochastic process before once
hitting state j will be the same as that of the original
process.

e The first passage time from state i to state j is now the
time of absorption starting from state i in the new
process
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First Passage Time

e The basic results for absorbing chain can be obtained
from the fundamental matrix N

N=[I-Q]"
Where

N = the fundamental matrix whose n;, denotes the mean

number of times the process is in state k before absorption,
the process having been started in state |

Q = The matrix obtained by deleting the jth row and the jth
column from matrix P of transition probabilities
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First Passage Time

N=[1-Q™"
e The mean first passage tirpvg 1from state i to j is therefore

t_i=znik

k=1
e The variance column vector is given by

W = [2N —I]t —t,
where

W; = The variance of the first passage time from state i to
state |

t = The column vector such that ¢; is the mean first
passage time from | to |

— . . _2
t. = The column vector with t,; = t; e e
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