ECEN643 Problem Solving Session_2

Content

There will be 2 parts.

1st part is review of previous lectures on decomposition

2nd part is solving a example problem using two approaches

Review of Decomposition

- 1. Ford-Fulkersen Algorithm
- 2. Understanding of u vector
- 3. Understanding of v_k
- 4. Understanding of A, L, U sets

F-F Algorithm

- 1. Start with a feasible flow on all arcs. Capacity restrictions and flow conservation at nodes must be satisfied.
- Using labeling routine, find a flow augmenting path s to n through which a positive flow can be sent.
- 3. Compute the maximal flow δ that can be sent along the path.
- 4. Increase the flow on all forward arcs on the path by δ .
- 5. Find another flow augmenting path and repeat the procedure.

The algorithm terminates when no flow augmenting path can be found.

Designed for large and complicated system

F-F Algorithm

- 1. Try to supply the load with minimum generation possible
- 2. Multiple solutions possible
- To reduce the computation complicity, try to make more arcs with 0 flow. So the failure of that arc will not affect the system, thus less L sets and U sets

Understanding of u vector

U vector directly corresponds to results of F-F algorithm

If every arc is above or equal to u vector, system in acceptable sets (A)

If every arc is below u vector, system in loss of load sets. (L)

If some arc is above and some is below, system is in unclassified sets (U)

Understanding of v_k

 v_k for arc k Individual definition, different from u vector

If arc k is below v_k

even if other arcs are trying their best to supply the load system is in loss of load sets. (L_k)

 v_k : Minimum state needed for arc k to supply the load

Understanding of v_k

Steps to find v_k

In actual implementation to find v_k , we proceed in the following steps:

- 1. Set all states of the network to the maximum capacities of the U set being decomposed.
- 2. Find max flow using Ford- Fulkerson algorithm.
- 3. If the max flow found is less than the total demand, then there is loss in at least one area and thus this whole set is an L set. Otherwise go to step 4.
- 4. Now remove the kth arc. Keep the flows found in step 2 on all other arcs. Find the maximum flow from node s to node k. Let us say this flow is e_k . This means that even if the flow in arc k is reduced by e_k , this much flow can be sent through the unused capacity of the remaining system without having system loss of load. Thus v_k corresponds to the state with capacity equal to or just greater than $f_k e_k$.

Understanding of v_k

 f_k : original flow in F-F algorithm, flow needed to supply the load

 e_k : Maximum flow can be supplied between two nodes of arcs k, if arc k is removed

 $f_k - e_k$: minimum flow needed to supply the load, with all other arcs trying their best

Understanding of A L U Sets

If every arc is above or equal to u vector, system in acceptable sets (A)

$$A = \begin{pmatrix} M_1 & M_2 & \dots & M_n \\ u_1 & u_2 & \dots & u_n \end{pmatrix}$$

Understanding of A L U Sets

If arc k is below v_k

even if other arcs are trying their best to supply the load system is in loss of load sets. (L_k)

$$L_{1} = \begin{pmatrix} v_{1} - 1 & M_{2} & \dots & M_{n} \\ m_{1} & m_{2} & \dots & m_{n} \end{pmatrix}$$

$$L_{2} = \begin{pmatrix} M_{1} & v_{2} - 1 & \dots & M_{n} \\ v_{1} & m_{2} & \dots & m_{n} \end{pmatrix}$$

$$L_{k} = \begin{pmatrix} M_{1} & \dots & v_{k} - 1 & \dots & M_{n} \\ v_{1} & \dots & m_{k} & \dots & m_{n} \end{pmatrix}$$

Understanding of A L U Sets

U sets are remaining sets of state space S after A and L sets are determined

$$U_{1} = \begin{pmatrix} u_{1} - 1 & M_{2} & \dots & M_{n} \\ v_{1} & v_{2} & \dots & v_{n} \end{pmatrix}$$

$$U_{2} = \begin{pmatrix} M_{1} & u_{2} - 1 & \dots & M_{n} \\ u_{1} & v_{2} & \dots & v_{n} \end{pmatrix}$$

$$U_{k} = \begin{pmatrix} M_{1} & \dots & u_{k} - 1 & \dots & M_{n} \\ u_{1} & \dots & v_{k} & \dots & v_{n} \end{pmatrix}$$

Understanding of A, L, U sets

A simple system with two arcs

9 possible combination

R2 $A = \begin{pmatrix} M_1 & M_2 & \dots & M_n \\ u_1 & u_2 & \dots & u_n \end{pmatrix}$ R1 $U_k = \begin{pmatrix} M_1 & \dots & u_k - 1 & \dots & M_n \\ u_1 & \dots & v_k & \dots & v_n \end{pmatrix}$ R2 R2 R1 2+1 R1 U2 Y2 Y2 Y2 B2 **B1** $L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$ R2 R1 **L2** 3+2 Y2 Y1 =9B2 B2 **B1**

Assume a system of 3 interconnected (Arc number on respective arrows):

Generation: There are 4 identical generators in each area, each with a capacity of 200 MW and probability of failure 0.15

<u>Transmission:</u> The transmission between any two areas has a bidirectional capacity of 200 MW and is assumed not to fail.

Load: The load in each area is assumed to be 700 MW.

Question 1: Please find the A, L and U sets resulting from the first decomposition.

Question 2: Then decompose the resulting U sets into A, L and U sets

Question 3: Find the probabilities of A, L and U sets from these two levels of decomposition and tabulate the trend as a function of the level of decomposition.

Since probability calculation is required, generation capacity outage table is needed.

To build a capacity outage table of generation system, cumulative probability is calculated from exact probability of each state.

Generation: There are 4 identical generators in each area, each with a capacity of 200 MW and probability of failure 0.15

$$p_f = 0.15, p_u = 0.85$$

$$P_{1} = P(Capout \ge 0) = 1$$

$$P_{2} = P(Capout \ge 200) = P_{1} - P(Capout = 0) = P_{1} - \binom{4}{0}p_{u}^{4} = 0.4780$$

$$P_{3} = P(Capout \ge 400) = P_{2} - P(Capout = 200) = P_{2} - \binom{4}{1}p_{u}^{3}p_{f} = 0.1095$$

$$P_{4} = P(Capout \ge 600) = P_{3} - P(Capout = 400) = P_{3} - \binom{4}{2}p_{u}^{2}p_{f}^{2} = 0.0120$$

$$P_{5} = P(Capout \ge 800) = P_{5} - P(Capout = 600) = P_{5} - \binom{4}{2}p_{u}^{3}p_{f}^{2} = 0.0005$$

Generation: There are 4 identical generators in each area, each with a capacity of 200 MW and probability of failure 0.15

Generation Capacity Outage Table

i	C _i (Capacity out)	P _i (Cum. Prob.)	Arc State
1	0 MW	1	5
2	200 MW	0.4780	4
3	400 MW	0.1095	3
4	600 MW	0.0120	2
5	800MW	0.0005	1

Next step is to develop arc state table for all the arcs in system

<u>Trick:</u>
<u>Because transmission line won't fail, only one state for transmission arc</u>

Arc			Arc Capa	city / MW		
State	1	2	3	4	5	6
5	800	800	800			
4	600	600	600			
3	400	400	400			
2	200	200	200			
1	0	0	0	200	200	200

So at the beginning of first level decomposition, we have

$$S = \begin{pmatrix} 5 & 5 & 5 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Arc			Arc Capa	city / MW		
State	1	2	3	4	5	6
5	800	800	800			
4	600	600	600			
3	400	400	400			
2	200	200	200			
1	0	0	0	200	200	200

Firstly, find the maximum flow and corresponding u vector

$$u = (5 \ 5 \ 5 \ 1 \ 1 \ 1)$$

700 flow needs 800 capacity, thus u1= u2= u3= state 5

Thus,
$$A = \begin{pmatrix} 5 & 5 & 5 & 1 & 1 & 1 \\ 5 & 5 & 5 & 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} M_1 & M_2 & \dots & M_n \\ u_1 & u_2 & \dots & u_n \end{pmatrix}$$

$$L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$$

Find v1 and corresponding L1

$$f1 - e1 = 700 - 200 = 500$$

 $v1 = 4 (600 capacity)$

$$L1 = \begin{pmatrix} 3 & 5 & 5 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$$

Find v2 and corresponding L2

$$f2 - e2 = 700 - 200 = 500$$

 $v2 = 4 (600 capacity)$

$$L2 = \begin{pmatrix} 5 & 3 & 5 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$$

Find v3 and corresponding L3

$$f3 - e3 = 700 - 200 = 500$$

 $v3 = 4 (600 capacity)$

$$L3 = \begin{pmatrix} 5 & 5 & 3 & 1 & 1 & 1 \\ 4 & 4 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Flow in arc 4,5,6 are zero, their failure would never affect the system Besides, there is only one possible state in arc 4,5,6

$$v4 = v5 = v6 = 1$$

$$L4 = L5 = L6 = \emptyset$$

$$U_k = \begin{pmatrix} M_1 & \dots & u_k - 1 & \dots & M_n \\ u_1 & \dots & v_k & \dots & v_n \end{pmatrix}$$

Find remaining U sets

$$S = \begin{pmatrix} 5 & 5 & 5 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$u = (5 5 5 1 1 1)$$

 $v = (4 4 4 1 1 1)$

$$v = (4 \quad 4 \quad 4 \quad 1 \quad 1 \quad 1)$$

$$U1 = \begin{pmatrix} 4 & 5 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$U2 = \begin{pmatrix} 5 & 4 & 5 & 1 & 1 & 1 \\ 5 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$U3 = \begin{pmatrix} 5 & 5 & 4 & 1 & 1 & 1 \\ 5 & 5 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$U4 = U5 = U6 = \emptyset$$

	i	C _i (Capacity out)	P _i (Cum. Prob.)	Arc State
	1	0 MW	1	5
	2	200 MW	0.4780	4
	3	400 MW	0.1095	3
า	4	600 MW	0.0120	2
	5	800MW	0.0005	1

End of 1st level of decomposition

$$A = \begin{pmatrix} 5 & 5 & 5 & 1 & 1 & 1 \\ 5 & 5 & 5 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(A) = (P_1 - P_2) * (P_1 - P_2) * (P_1 - P_2) * 1 = 0.1422$$

$$\sum Prob = 1 = Prob(S)$$

At 2nd level of decomposition, start with U1

$$S - new = U1 = \begin{pmatrix} 4 & 5 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

Arc			Arc Capa	city / MW		
State	1	2	3	4	5	6
5	800	800	800			
4	600	600	600			
3	400	400	400			
2	200	200	200			
1	0	0	0	200	200	200

Firstly, find the maximum flow and corresponding u vector

$$u = (4 5 5 1 1 1)$$

700 flow needs 800 capacity, thus u3= state 5

Thus,
$$A - U1 = \begin{pmatrix} 4 & 5 & 5 & 1 & 1 & 1 \\ 4 & 5 & 5 & 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} M_1 & M_2 & \dots & M_n \\ u_1 & u_2 & \dots & u_n \end{pmatrix}$$

$$L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$$

Find v1 and corresponding L11

$$f1 - e1 = 600 - 100 = 500$$

 $v1 = 4 (600 capacity)$

Also v1 has only possible state

$$L11 = \begin{pmatrix} 3 & 5 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix} = \emptyset$$

$$L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$$

Find v2 and corresponding L12

$$f2 - e2 = 800 - 100 = 700$$

 $v2 = 5 (800 capacity)$

$$L12 = \begin{pmatrix} 4 & 4 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$$

Find v3 and corresponding L13

$$f3 - e3 = 700 - 0 = 700$$

 $v3 = 5 (800 capacity)$

$$L13 = \begin{pmatrix} 4 & 5 & 4 & 1 & 1 & 1 \\ 4 & 5 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$L_k = \begin{pmatrix} M_1 & \dots & v_k - 1 & \dots & M_n \\ v_1 & \dots & m_k & \dots & m_n \end{pmatrix}$$

Find v4 and corresponding L14

$$f4 - e4 = 100 - 100 = 0$$
$$v4 = 1$$

V4 has only one possible state

$$L14 = \begin{pmatrix} 4 & 5 & 5 & 0 & 1 & 1 \\ 4 & 5 & 5 & 1 & 1 & 1 \end{pmatrix} = \emptyset$$

$$U_k = \begin{pmatrix} M_1 & \dots & u_k - 1 & \dots & M_n \\ u_1 & \dots & v_k & \dots & v_n \end{pmatrix}$$

Find remaining U sets

$$U1 = \begin{pmatrix} 4 & 5 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix} = 4 \text{ states}$$

Trick:

For U sets with few states, you can find out when to stop decomposition by inspection.

$$A - U1 = \begin{pmatrix} 4 & 5 & 5 & 1 & 1 & 1 \\ 4 & 5 & 5 & 1 & 1 & 1 \end{pmatrix} = 1 \text{ state}$$

$$L12 = \begin{pmatrix} 4 & 4 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix} = 2 \text{ states}$$

$$L13 = \begin{pmatrix} 4 & 5 & 4 & 1 & 1 & 1 \\ 4 & 5 & 4 & 1 & 1 & 1 \end{pmatrix} = 1 \text{ state}$$

Thus

U sets of U1 are empty

Exampl	le	Pi	0	b]	le

İ	C _i (Capacity out)	P _i (Cum. Prob.)	Arc State
	•		
1	0 MW	1	5
2	200 MW	0.4780	4
3	400 MW	0.1095	3
4	600 MW	0.0120	2
5	800MW	0.0005	1

Check probability, also prepare for question 3

$$Prob(U1) = (P_2 - P_3) * (P_1 - P_3) * (P_1 - P_3) * 1 = 0.2922$$
 After decomposition
$$A - U1 = \begin{pmatrix} 4 & 5 & 5 & 1 & 1 & 1 \\ 4 & 5 & 5 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(A - U1) = (P_2 - P_3) * (P_1 - P_2) * (P_1 - P_2) * 1 = 0.1004$$

$$L12 = \begin{pmatrix} 4 & 4 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(L12) = (P_2 - P_3) * (P_2 - P_3) * (P_1 - P_3) * 1 = 0.1209$$

$$L13 = \begin{pmatrix} 4 & 5 & 4 & 1 & 1 & 1 \\ 4 & 5 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(L13) = (P_2 - P_3) * (P_1 - P_2) * (P_2 - P_3) * 1 = 0.0709$$

$$\sum Prob = 0.2922 = Prob(U1)$$

 $U1 = \begin{pmatrix} 4 & 5 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$

i	C _i (Capacity	P _i (Cum.	Arc State
	out)	Prob.)	
1	0 MW	1	5
2	200 MW	0.4780	4
3	400 MW	0.1095	3
4	600 MW	0.0120	2
5	800MW	0.0005	1

Decompose U2

$$U2 = \begin{pmatrix} 5 & 4 & 5 & 1 & 1 & 1 \\ 5 & 4 & 4 & 1 & 1 & 1 \end{pmatrix} = 2 \text{ states}$$

$$Prob(U2) = (P_1 - P_2) * (P_2 - P_3) * (P_1 - P_3) * 1 = 0.1713$$

Repeat previous procedures

$$A - U2 = \begin{pmatrix} 5 & 4 & 5 & 1 & 1 & 1 \\ 5 & 4 & 5 & 1 & 1 & 1 \end{pmatrix} = 1 \text{ state}$$

$$Prob(A - U2) = (P_1 - P_2) * (P_2 - P_3) * (P_1 - P_2) * 1 = 0.1004$$

$$L23 = \begin{pmatrix} 5 & 4 & 4 & 1 & 1 & 1 \\ 5 & 4 & 4 & 1 & 1 & 1 \end{pmatrix} = 1 \text{ state}$$

$$Prob(L23) = (P_1 - P_2) * (P_2 - P_3) * (P_2 - P_3) * 1 = 0.0709$$

$$\sum Prob = 0.1713 = Prob(U2)$$

i	C _i (Capacity out)	P _i (Cum. Prob.)	Arc State
1	0 MW	1	5
2	200 MW	0.4780	4
3	400 MW	0.1095	3
4	600 MW	0.0120	2
5	800MW	0.0005	1

Decompose U3

$$U3 = \begin{pmatrix} 5 & 5 & 4 & 1 & 1 & 1 \\ 5 & 5 & 4 & 1 & 1 & 1 \end{pmatrix} = 1 \text{ state}$$

$$Prob(U3) = (P_1 - P_2) * (P_1 - P_2) * (P_2 - P_3) * 1 = 0.1004$$

Repeat previous procedures

$$A - U3 = \begin{pmatrix} 5 & 5 & 5 & 1 & 1 & 1 \\ 5 & 5 & 5 & 1 & 1 & 1 \end{pmatrix} = 1 \text{ state}$$

$$Prob(A - U3) = (P_1 - P_2) * (P_1 - P_2) * (P_2 - P_3) * 1 = 0.1004$$

$$\sum Prob = 0.1004 = Prob(U3)$$

After level 2 decomposition, U sets become empty sets, thus state space is fully decomposed.

To answer question 3, summarize previous probabilities

After level 2 decomposition

$$Prob(A) = Prob(A) + Prob(A - U1) + Prob(A - U2) + Prob(A - U3)$$

= 0.4435

$$Prob(L) = Prob(L1) + Prob(L2) + Prob(L3) + Prob(L12) + Prob(L13)$$
$$+ Prob(L23) = 0.5565$$

$$Prob(U) = 0$$

Question 3: Find the probabilities of A, L and U sets from these two levels of decomposition and tabulate the trend as a function of the level of decomposition

Put into a tabular form

	Level of Decomposition		
	1	2	
Prob(A)	0.1422	0.4436	
Prob(L)	0.2939	0.5565	
Prob(U)	0.5639	0	

What if we had different u vector at the beginning?

Different results after 1st level of decomposition

But same final results when state space is fully decomposed.

Firstly, find the maximum flow and corresponding u vector

$$u = (4 5 5 1 1 1)$$

700 flow needs 800 capacity, thus u1= u2= u3= state 5

Thus,
$$A = \begin{pmatrix} 5 & 5 & 5 & 1 & 1 & 1 \\ 4 & 5 & 5 & 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} M_1 & M_2 & \dots & M_n \\ u_1 & u_2 & \dots & u_n \end{pmatrix}$$

End of 1st level of decomposition

$$A = \begin{pmatrix} 5 & 5 & 5 & 1 & 1 & 1 \\ 4 & 5 & 5 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(A) = (P_1 - P_3) * (P_1 - P_2) * (P_1 - P_2) * 1 = 0.2426$$

$$L1 = \begin{pmatrix} 3 & 5 & 5 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}, L2 = \begin{pmatrix} 5 & 3 & 5 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}, L3 = \begin{pmatrix} 5 & 5 & 3 & 1 & 1 & 1 \\ 4 & 4 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(L1) = (P_3) * (P_1) * (P_1) * 1 = 0.1095$$

$$Prob(L2) = (P_1 - P_3) * (P_1) * (P_1) * 1 = 0.0975$$

$$Prob(L3) = (P_1 - P_3) * (P_1 - P_3) * (P_3) * 1 = 0.0868$$

$$Prob(L) = Prob(L1) + Prob(L2) + Prob(L3) = 0.2939$$

$$U2 = \begin{pmatrix} 5 & 4 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}, U3 = \begin{pmatrix} 5 & 5 & 4 & 1 & 1 & 1 \\ 4 & 5 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(U2) = (P_1 - P_3) * (P_2 - P_3) * (P_1 - P_3) * 1 = 0.2922$$

$$Prob(U3) = (P_1 - P_3) * (P_1 - P_2) * (P_2 - P_3) * 1 = 0.1713$$

$$Prob(U) = Prob(U1) + Prob(U2) + Prob(U3) = 0.4635$$

$$\sum Prob = 1 = Prob(S)$$

2nd level of decomposition Decompose U2

$$U2 = \begin{pmatrix} 5 & 4 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(U2) = (P_1 - P_3) * (P_2 - P_3) * (P_1 - P_3) * 1 = 0.2922$$

After decomposition

$$A - U2 = \begin{pmatrix} 5 & 4 & 5 & 1 & 1 & 1 \\ 5 & 4 & 5 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(A - U2) = (P_1 - P_2) * (P_2 - P_3) * (P_1 - P_2) * 1 = 0.1004$$

$$L21 = \begin{pmatrix} 4 & 4 & 5 & 1 & 1 & 1 \\ 4 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(L21) = (P_2 - P_3) * (P_2 - P_3) * (P_1 - P_3) * 1 = 0.1209$$

$$L23 = \begin{pmatrix} 5 & 4 & 4 & 1 & 1 & 1 \\ 5 & 4 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(L23) = (P_1 - P_2) * (P_2 - P_3) * (P_2 - P_3) * 1 = 0.0709$$

$$\sum Prob = 0.2922 = Prob(U1)$$

2nd level of decomposition Decompose U3

$$U3 = \begin{pmatrix} 5 & 5 & 4 & 1 & 1 & 1 \\ 4 & 5 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(U3) = (P_1 - P_3) * (P_1 - P_2) * (P_2 - P_3) * 1 = 0.1713$$

After decomposition

$$A - U3 = \begin{pmatrix} 5 & 5 & 4 & 1 & 1 & 1 \\ 5 & 5 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(A - U3) = (P_1 - P_2) * (P_1 - P_2) * (P_2 - P_3) * 1 = 0.1004$$

$$L31 = \begin{pmatrix} 4 & 5 & 4 & 1 & 1 & 1 \\ 4 & 5 & 4 & 1 & 1 & 1 \end{pmatrix}$$

$$Prob(L31) = (P_2 - P_3) * (P_1 - P_2) * (P_2 - P_3) * 1 = 0.0709$$

$$\sum Prob = 0.1713 = Prob(U3)$$

After level 2 decomposition, U sets become empty sets, thus state space is fully decomposed.

$$Prob(A) = Prob(A) + Prob(A - U2) + Prob(A - U3) = 0.4435$$

$$Prob(L) = Prob(L1) + Prob(L2) + Prob(L3) + Prob(L21) + Prob(L23) + Prob(L31) = 0.5565$$

$$Prob(U) = 0$$

Level of				
Decomposition				
1 2				
Prob(A)	0.2426	0.4436		
Prob(L)	0.2939	0.5565		
Prob(U)	0.4635	0		

Different u vector affect result of current level decomposition

But all of them will reach the same result when state space is fully decomposed

Level of				
Decomposition				
	1 2			
Prob(A)	0.1422	0.4436		
Prob(L)	0.2939	0.5565		
Prob(U)	0.5639	0		

Level of		
Decomposition		position
	1	2
Prob(A)	0.2426	0.4436
Prob(L)	0.2939	0.5565
Prob(U)	0.4635	0