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Fundamental Concepts
in Reliability Engineering

3.1 INTRODUCTION

This chapter briefly presents the fundamental concepts in reliability en-
gineering such as general reliability function, redundant networks, reliabil-
ity evaluation techniques, reliability apportionment, and failure mode and
effect analysis,

In this chapter, a brief discussion on reliability evaluation techniques
such as binomial, Markov processes (state space approach), decomposi-
tion, minimal cut set, and network reduction is presented. The delta-star
technique is presented in a more detailed form.

3.2 GENERAL RELIABILITY FUNCTION

3.21 General Concepts

Suppose n, identical components are under test, after time 7, n(t) fail and
n (1) survive. The reliability function R(7) is defined by

n,(1)

since ,L
n(t)+n(r)=n,

the equation becomes

R(ey= ) (3.2)
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since

R(t)+F(1)=1

R(t)=1-F(1) (3.3)

where F(1) the failure probability at time f. To obtain failure probability
F(1), substitute (3.2) into (3.3), and subtract it from unity, that is,

[rom- )

A1) +np(1)=ng

1

F{:}=I—[""_E“})-":{:} (3.4)
By using the above result in relationship (3.3) we get
R{r}nl—F{:}nl—n‘:{:) (3.5)
the derivative of (3.5) with respect to time ¢ is
0 T 1) (3.6)

dr g dr

In the limiting case, as dr approaches zero, the expression (3.6) is the
instantaneous failure density function f{1), that is,

1 dng f 1)
= ef{r)
Therefore, expression (3.6) becomes
dR(1)
=== (3.7)

By using relationship (3.2) the other form of (3.6) may be written as

e 1) dR(r) _ dn,(1)
di Mo~ dr

(3.8)

General Refiahility Function ¥
3.2.2 Instantaneous Failure or Hazard Rate ¥
If we divide both sides of (3.8) by a,(r), we get

1 dn;{r}_ —ng dR(1)

n (1) di n(t) dt ()
This is equal to the hazard rate A(1), that 1s,
dn (1
| dng( )“_ ng dR(r) =A(r) (3.10)

n(t) dt nf1) drt

By substituting (3.2) and (3.7) into (3.10), we get an expression for the
hazard rate {instantaneous rate):

__ 1 _dr(1) _ f(1)
Ar) R & R() (3.11)
3.2.3 Reliability Function
Equation 3.11 may be rewritten in the following form;
—dR(1t)
R(D) =A(r)dr (3.12)

By integrating both sides of (3.12) over the time range 0 to 1, we get
Rit)
fh{:}d -—J: T }dm:}

For the known initial condition that at r=0, R(7)=1 the above integral
expression becomes

InR(:}-—L‘A{:}df (3.13)

“The following general reliability function is obtained from (3.13):

R(t)=e~ [Mord (3.14)

Where A(1) is the time-dependent failure rate or instantaneous failure
rate. It is also called the hazard rate. The above expression is a general
reliability function. In other words, it can be used to obtain a component
reliability for any known failure time distribution.
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33 BATHTUB HAZARD RATE CURVE

This hazard rate curve, shown in Figure 3.1, is regarded as a typical hazard
rate curve, especially when representing the failure behavior of electronic
components. Mechanical components may or may nol follow this type of
failure pattern.

As shown in Figure 3.1 the decreasing hazard rate is sometimes called
the “burn-in period.” There are also several other names for this period
such as debugging period, infant mortality period, break-in period. Occur-
rence of failures during this period is normally attributed to design
manufacturing defects.

The constant part of this bathtub hazard rate is called the “uzu:t'ulJ
period,” which begins just after the infant mortality period and ends just
before the “wear-out period.”

The wear-out period begins when an equipment or component has aged
or bypassed its useful operating life. Consequently, the number of failures
during this time begin to increase.|Failures that occur during the useful life
are called “random failures™ because they occur randomly or in another
word unpredicmbly.']

The hazard rate shown in Figure 3.1 can be represented by the following
function [15]:

A()=kAer* '+ (1 —k)be*'Be?”’ (3.15)
for b,e,B,A>0 0<k<1 t>0 and c=0.5 b=1

where b, c=shape parameters
B, A=scale parameters

f=time
=
=
5
E
v
B
]
T
HUITIII'I ful Tif od Wearout period —s=
permd—:l-|-¢—th|U|aper| —-i-l-l!— n
| I
i 1
0w = e e s = J
Decreasing Constant hazard rate Increasing hazard rate
hazard rate

Dperating time [componant age or [ife)
Figure 3.1 Bathtub curve,
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34 MEAN-TIME-TO-FAILURE (MTTF)

The expected value E(r). in our case MTTF, of a probability density
function of the continuous random variable time ¢ is given by

E{:}-MTTF-L“;;{:M: (3.16)

where f(r) is the failure density function.

Example 1. Suppose, a component failure time follows the exponential
failure law. It follows that the component has constant failure rate, A (i.e.,
wseful life period of the bathtub curve). Find the reliability function and
the mean-time-to-failure expressions.

From the known information,

fla)y=he ™ (3.17)
and
Alr)=A (3.18)
To obtain the reliability function substitute (3.18) into (3.19):
R(t)=e [r=g=M (3.19)
In the case of MTTF substitute (3.17) into (3.16) to get

M'ITF-=me¢‘“ (3.20)
]

The following is obtained by integrating the above expression by parts:

Sk e

,',MTTF-% (321)

Thc above expression represents the situation when a component’s failure
times are exponentially distributed, MTTF is a reciprocal of the constant
hazard rate, A, as given by (3.21).

35 RELIABILITY NETWORKS

This section describes the five typical reliability configurations.
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— B, —~ R, P K, P-4 K, =

Flgure 3.2 A senes system block diagram.

— [ 351 &!ﬁlM‘!l

This arrangement represents a system whose subsystems or components
form a series network. If anyone of the subsystem or component fails, the
series system experiences an overall system failure. A typical series system
configuration is shown in Figure 3.2.

If the series system component failures are statistically independent,
then the reliability R, of a series system with nonidentical components is
given by

" "
R.= ] &, (3.22)

where n is the number of components or subsystems and R, is the
reliability of ith component or subsystem.

If the failure times of components are exponentially distributed (i.e., if
components have constant failure rates), then the ith component reliability
may be obtained from (3.19), that is,

R(1)=e (3.23)
By substituting (3.23) into (3.22),
[
R()=e S A (3.24)
=
MTTF is given by
MTTF= [ "¢~ 3 \,rde
] =]
|
- (3.25)
Eli"n
=

The above expression shows that a series system (MTTF) is the recipro-
cal of sum of the series network component failure rates.

Example 2. Two nonidentical pumps are required to run a system at a
full load. Assume, pump 1 and 11 have constant failure rates A, =0.0001
failure /hour and A, =0.0002 failure /hour, respectively. Calculate this series
_gystem mean time to failure and reliability for a 100 hour mission; assume
that both the pumps start operating at =0.

The following series system reliability R, for a 100 hour mission is
computed by using (3.24):

RJ[']=E_=AF+,‘T”‘
R,(100) =g (0001 + 00002100 = 0.97045

By utilizing (3.25) we get

M A, +A,  0.0001+0.0002

=13 3333 hours

[3.;: Parallel Configuration| <——

“This configuration is shown in Figure 3.3. This system will fail if and only
if all the units in the system malfunction. The model is based on the
assumption that all the system units are active and load sharing. In
addition it is assumed that the component failures are statistically indepen-
dent. A parallel structure reliability R, with nonidentical units or compo-
nent reliability is given by

s ﬁ (1-R;)
j=1

(3.26)

Figure 3.3 A parallel network block diagram.



12 Fundamental Concepts in Reliability Engineering

where n is the number of units. R, is the reliability of ith component or
subsystem.

If the component failure rates are constant, then by substituting (3.19)
into (3.26),

Ry(0)=1- T (1-e7)

(3.27)
i1
MTTF is obtained by integrating (3.27) over the interval [0, =o],
m o= s
MTTF= | R, (t)di= 1= [l (1—e™™) b
5 e it
1 1 | 1 1
-(?‘_|+-"-_z+.”+E)_[-’H+h:+hn+ia+“')
+ ] + : i
VS PR W S S
g oE (3.28)
IRV
i=1
For identical components, the above equation reduces to
MTTF=1 3 - (3.29)
=1 !

Example 3. Suppose two identical motors are operating in a redundant
configuration. If either of the motors fails, the remaining motor can still
operate at the full system load. Assume both motors are identical and their
failure rates are constant. In addition, motor failures are statistically
independent. If both motors start operating at =0, find the following:

1. System reliability for given A=0.0005 failure/hour, t=400 hours (mis-
sion time).
2. Mean-time-to-failure (MTTF).

For identical units, (3.27) becomes
R(t)y=2e Mg~ 2M
since A=0.0005 failure/hour, =400 hours
+"« R(400) = 2 ¢~ ©-000SH400) _ = (20.0005%400)

=0.9671

Reliability Networks i3
MTTF is obtained from (3.29)

MTTF = %([+ %)=§%
1.5

= 0.0005

{253 Standby Redundancy | a— cpspritics v Ped ?

~This type of redundancy represents a situation with one operating and n
‘units as standbys. The standby redundancy arrangement is shown in
Figure 3.4, Unlike a parallel network where all units in the configuration
are active, the standby units are not active.

The system reliability of the (n+ 1) unit, in which one unit is operating
;:;d n units on the standby mission until the operating unit fails, is given

= 13,000 hours

" |
R, (t)="S %_
i=0 :

(3.30)

‘The above equation is true if the following are true:

1. The switching arrangement is perfect.

2. The units are identical.

3. The units failure rates are constant.

4. The standby units are as good as new.

5. The unit failures are statistically independent.

~In 'l,he case of (n+1), nonidentical units whose failure time density
functions are different, the standby redundant system failure density is

L — I}

Figure 34 A standby redundancy model.
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given by

L=[ [ [ AODAGRY fenit-2)

Fa=0¥y_y ¥

dy,dyy- -~ dy, (3.31)

Thus, the system reliability can be obtained by integrating f,(r) over the
interval [r, oa] as follows:

R,()= [ WAL (3.32)

Example 4. Assume that a system contains two identical units, that is,

one operating and the other on the standby mission. Furthermore, the

units failure rates are constant. In addition assume that the standby unit is

as good as new at the beginning of its mission. Evaluate system reliability

for a 100-hour mission for given unit failure rate, A=0.001 failure /hour.
Equation (3.30) gives us

R (t)=(1+Ar)e" M (3.33)
For known =100 hours, A=0.001 failure/hour, the system reliability is

=(140.1)¢ "' =0.9953

[3.54 kout ofn cwl

This is another form of redundancy. It is used where a specified number of
units must be good for the system success. The series and parallel config-
uration in the preceding sections are special cases of this configuration,
that is, k=n and k=1, respectively.

Reliability of this type of configuration is obtained by applying the
binomial distribution. The system reliability for k-out-of-n number of
independent and identical units is given by:

Ru_-é:k(?)ﬂ‘{l—ﬂ)"’ (3.34)

For the constant unit failure rate A, the above equation becomes

R-t..-"l[”- i (:){e—.’u };‘l;l-;l_"-“]'

i=k ([—-c“’“)'—

(3.35)

Reliability Nerworks kL]

Ny

Figure 3.5 A five dissimilar units bridge network.
Example 5. Assume that in (3.35) k=2, n=3, and A=0.0001 failure /hour.
Therefore the system reliability for a 200-hour mission is

R 1;3[2["]] = 3f_ﬂ *0.001200_ 2e” (<0.0015300
=0.9133

3.5.5 Bridge Configuration

This network is shown in Figure 3.5, The critical element of the configura-
tion is labeled as “3." For nonidentical and independent units, the five
units bridge network reliability equation from reference 27 is

Rn-z.ﬂleRgR,‘R}— RIR]R4R5_ Hiﬂjﬂ‘ﬂsh-ﬂ]ﬂ:ﬁ‘.ﬂs
_'-Rl-R:RJR!_RIR2R3R4+H|R1R5+R1R3R‘+RIR4+RIRE

(3.36)
In this case of identical units, the above equation reduces to

R,=2R°-5R*+2R’+2R? (3.37)

For units with constant failure rate, substitute (3.19) into (3.37), that is,
R(1)=2e M —5e~4M 420~ 9,200 (3.38)

MTTF is obtained by integrating (3.38) over the interval [0, oo}, that is,

ks
MTTF = [ *(2¢7V = 5e= 4\ 42~ 4 2¢~M) gy
]

(3.39)

il
2l&
>| =

4—eq.
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Example 6. Compute system reliability and MTTF for a five independent
and identical units bridge configuration. Suppose

A=0.0005 failure /hour
=100 hours
and all units start operating at r=0. Equation 3.38 gives
R(300)=2e70% 5702427015 4 270
=[).9999

The following MTTF result is obtained by substituting the given failure
data in (3.39)

49

- m - l5334 hD‘lﬂ.’E

MTTF

3.6 RELIABILITY EVALUATION TECHNIQUES

This section briefly describes reliability evaluation techniques Readers with
no indepth knowledge of these techniques should consult references 36 and
37.

3.6.1 Binomial Theorem to Evaluate Network Reliability

This is one of the simplest methods to evaluate system reliability. However,
it is only useful for evaluating reliability of simple systems of series and

parallel form. For complex systems it is quite a trying task.
The following is always true for the binomial expression in reliability
(pt+q)"=1 (3.40)

where P=the component probability of success
g =the component probability of failure
n=the number of identical components

Example 7. When two identical components form a series or parallel
configuration we obtain the resulting equation from (3.40):

(p+q)'=p*+2pg+q* (3.41)

Here p*=probability of both components operating
2 pg=probability of one component failed and one working
g*=probability of both components failed

Reliability Evaluation Technigues i

Therefore, the reliability equation of a two unit parallel system is given by
the first two terms of the right-hand side of expression (3.41):

R=p’+2pq (3.42)
since p+g=1, thenp=1—g (3.43)

By substituting (3.43) into (3.42) we get
R=1—¢* (3.44)

This is the reliability equation for a two identical and independent unit
parallel system.

1.6.2 State Space Approach (Markov Processes)

The state space approach is a very general approach and can generally
handle more cases than any other method. It can be used when the
components are independent as well as for systems involving dependent
failure and repair modes. There is no conceptual difficulty in incorporating
multistate components and modeling common cause failures.

The method proceeds by the enumeration of system states. The state
probabilities are then calculated and the steady-state reliability measures
can be calculated using the frequency balancing approach [39]. The perti-
nent relationships are given below:

I. Unavailability or the probability of failure is given by

P= 3 p, (3.45)

IeF

where p,=probability of being in state
F=subset of failure states
2. Frequency of failure [39] of encountering subset F is given by

J= E Py E 'hu (3.46)
IES~F jEerF
where  S=system state space
A, ;= transition rate from state i to state j

3. Mean duration of failure state is [39]
Fy
d,= 7 (3.47)
When the components are independent, the state probabilities can be
obtained using the multiplication rule. When, however, dependent failure
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or repair modes are involved, the state probabilities have to be obtained by
solving a set of linear algebraic equations. Probably the only serious
problem, particularly when constant transition rates are assumed, with this
approach is that for large systems, it could become unmanageable. In
many situations, the problem can be handled using a computer-generated
state transition matrix and reducing the size of the state space by trunca-
tion, sequential truncation, and using the concept of state merging. These
techniques are discussed in reference 39. Examples of the application of
these techniques for large systems can be found in reference 40.

3.6.3 Nerwork Reduction Technique

It is a simple and useful procedure for systems consisting of series and
parallel subsystems. Configurations such as bridge networks can be
analyzed using delta-star conversions [12, 13, 41]. Some approximation,
however, is involved in the use of these techniques [41]. The technique
consists of sequentially reducing the parallel and series configurations to
equivalent units until the whole network reduces to a single unit. The
bridge configurations can be converted to series and parallel equivalents
by using delta-star conversions or decomposition approach.

The primary advantage of this method is that it is easy to understand
and apply; however, generally it is not suitable for considering degraded
failure modes of components and systems. The independence of compo-
nents has to be generally assumed.

1.64 Decomposition Method

This method decomposes a complex system into simpler subsystems by the
application of conditional probability and conditional frequency theorems
[37]). The reliability measures of simpler subsystems are calculated and then
combined to obtain the results for the system. This method can be used to
simplify both the state space, as well as the network approach. Examples of
application in both of these areas can be found in reference 37. The
success of the method depends upon the choice of the key component, that
is, the component used for decomposing the network. If this component is
not judiciously chosen, the final results will be the same, but the computa-
tions could be far more tedious. For a relatively complex network, the
choice of proper key components to decompose the system into series
parallel configurations can be a trying task.

1.6.5 Minimal Cur Set Method

A general approach to the solution of reliability block diagrams is based
on minimal cut sets or minimal tie sets. This approach is very suitable for
computer application. The minimal cut sets of a reliability block diagram

Refiability Evaluation Technigues 9

can be identified using special algorithms. Once the minimal cut sets have
been enumerated, the reliability measures can be calculated using the
following relationships:

PeP(E )+ +P(G)-

PENG)++( G nq.)
i

.“{_]}”"[P{C_‘]ﬁ...nc_“)] (3.48)

and

= P(C\ )it + -+ "‘P{Em}ﬁm_f'(c_lﬂﬁz}ﬁlu

2 sl +P({_.‘;|"] C-J )-El-l-j)

“‘{_I}M_I[P{Eln”'ﬂE;n}Fl+---+m) (3.49)

where C,,C,=the minimal cut set i and failure of components in C,
respectively
;= the repair rate of component §

Hy4s+x=the sum of p, over all JE(C,UC,UC,), that is the sum of
repair rates of the components which belong to any or all
of Cp c:;-. Ck

Fy=probabulity of [ailure
Jfy=frequency of failure

As in the case of all network methods, this technique is not suitable for
incorporating degraded modes of operation. For m minimal cut sets, the
number of terms to be evaluated is 2™ This could create computational
problems, which could be partly alleviated using the concept of probability
and frequency bounds [42]. Similarly, one may obtain tie sets for a
complex system (described in detail in reference 37).

(.l.ﬁﬁ Mrum] P

To analyze a complex structure such as bridge, the delta-star transforma-
tion [12, 13] easily transforms the configuration into series and parallel
combinations. We derive the delta-star equivalent formulas by obtaining
the equivalent legs of the block diagrams of Figure 3.6.

Consider, for example, three components of a system with reliabilities
R, R,; and R_, connected to form the delta configuration shown in

—_—
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|

Ren
Figure 3.6 Delta-star reliability equivalent.

Figure 3.6. This configuration yields the star equivalent with reliabilities
R, R,and R,

Mow consider the transformation steps indicated by Figure 3.7 to derive
the delta to star equivalent. The application of independent event probabil-
ity laws to components connected in series and parallel combinations as
shown in Figure 3.7(a—c) will yield (3.55), (3.56), and (3.57), respectively:

For a simple independent series, the total system reliability is given by

1&,- R Ry« R,,_] (3.50)
where R,, Ry - - R, are the reliabilities of the N components.
The simple independent parallel case yields the total system failure
probability as
1FT-F,,F,-- Fy=(1-R)(1=Ry)---(1 -R,}] (3.51)
where F,, Fy- - - Fy are the unreliabilities of the N components.
Applying (3.50) and (3.51) to the legs presented in Figure 3.7 their
corresponding relationships are

R,Ry=1=(1=R 3 (1=R, Rc3) (3.52)
RyRe=1—(1—Rp )1 =R R p) (3.53)

Reliability Evaluation Techniques 41

T

i 1
|
I

{a)

{e)
Figure 3.7 Delta-star equivalent legs.

~ From these three simultaneous equations the following delta-to-star

relationships result:

R‘_VEl'“‘Rar}(l—chRu}][l'“ ‘ch}“ _RA{'RAB}I

[ =gl = Ru]“ _RAC'RC.I}]
(3.55)

R__\/[ L—(1=Rup)(1 = RycRep) ][ 1 - (1~ Rea)(1— RucRua)]
[1=(=Rc)1-RcaRn)]
(3.56)

. _\/[l—tl—RAEHI-RC.RJ.JI[1—{1—R4.J{1—R4cﬁc.}]
i [1=(1=Rep)(1 =R R )]
(3.57)
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Figure 3.8 A two-state device bridge structure,

Example 8 A bridge network example for independent units is solved to
illustrate the use of these formulas. Figure 3.8 illustrates the structure for a
simple bridge; the letters A, B, and C are used to label elements of the
delta configuration,

We obtain the equivalent star configuration values by using (3.55),
(3.56), and (3.57).

" R, =0.9948
R 5=0.9930, R .=0.9954

The network shown in Figure 3.8 may be expressed as its equivalent as
shown in Figure 3.9. The reliability equation for this structure is

RT-[l-[I—R,R‘}(l—FEzR,]]Rc

Ry = 08948 R, = 0.93

A

K. - 0.9954

Ry = 08930 R, =04

Figure 39 A transformed two-state device structure.
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‘Numerically the value of the total bridge reliability is
R;=0.987

for the given component reliability values.
Analyzing this bridge structure with the event space method also yields

R,=0.987

Equations 3.55-3.57 are interrelated. Therefore computation of the
value of the first equation helps to compute values of the other two
equations. This minimizes the computing time.

3.7 FAILURE MODE AND EFFECT ANALYSIS (FMEA)

This is an important step in a reliability and maintainability assurance
program. FMEA is a tool to evaluate design at the initial stage from the
reliability aspect. This criteria helps to identify need for and the effects of
design change.

Furthermore, the procedure demands listing of potential failure modes
of each and every component on paper and its effects on the listed
subsystems.

FMEA becomes failure modes, effects, and criticality analysis (FMECA)
[ criticalities or priorities are assigned to failure mode effects.
Some of the main characteristics of this procedure are as follows:

1. This is a routine upward procedure that begins from the detailed level.

2. By evaluating failure effects of each component, the whole system is

screened completely.

. It improves communication among design interface personnel.

%. It identifies weak areas in a system design and indicates areas where
further or detailed analysis are desirable.

Some of the main steps to perform FMEA are shown in Figure 3.10.

3.8 RELIABILITY APPORTIONMENT

To achieve the required reliability of a complex system, it is a routine
Procedure to set reliability targets for subsystems. Its main advantage is
that once the individual subsystem reliability goal is achieved, then the
overall system goal will automatically be fulfilled.

‘The process to set such reliability goals is known as the reliability
apportionment, Normally this is accomplished before the key design or
development decisions are made.
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Define system boundaries
and detailed reguiremeants

t

List all components and
subsystoms in a system

]

List necessary failure modes, the
dascription and the identification
af the component in question

¥

Assign failure rates to aach
compaonant failure mode

|

List sach failure mode
effect or effects on
subsystem and plant

{

Enter remarks for
each failure moda
in muestion

f

Review each critical
filure mode and take
necEssary action

Figure 3.10 FMEA flow chart.

Some of the reliability apportionment techniques are described in the
following sections.

3.81 Reliability/ Cost Models

Before applying this reliability /cost procedure, the relationship between
reliability and cost must be known for each subsystem to meetl system
reliability goal at minimum cost. However the main drawback of this
procedure is the lack of availability of cost data, that is, cost at a given
level of reliability.

3.8.2 Similar Familiar Systems Reliability Apportionment Approach

This approach is based upon the familiarity of the designer with similar
systems or subsystems. Its main weakness stems from the fact that the
reliability and life cycle cost of earlier similar designs have to be assumed
adequate when designing new systems. By applying this technique the

References 5
failure data collected on similar systems from the various sources can be
utilized.

1.83 Factors of Influence Method

This procedure is purely based upon the following important factors that
effect the system in question:

|. Complexity/Time. In the case of complexity it relates to the number of
subsystem parts, whereas time is related to the relative operational time
during the total functional period.

2. Environmental Factor. This concerns each subsystem's operating en-
vironmental conditions such as temperature, vibration, humidity, In
other words it deals with susceptibility or exposure of subsystems to
such environmental conditions.

3. State-of-the-Art. This factor takes care of advancement in the state-of-

the-art for a particular subsystem or component.

‘4. Subsystem Failure Criticality. This factor includes the criticality effect

of a subsystem failure on the system. For example, the failure of some
auxiliary instruments in an aircraft may not be as critical as the failure
of engine.

When applying this factor of influence procedure, each and every

subsystem is rated with respect to the influential factors, and one can
~assign a number between | and 10, where 1 is allocated to a subsystem
least affected by the factor in question and 10 is allocated to a subsystem
-most affected by the factors of influence. Thus reliability can be allocated
by using the weight of these assigned numbers for all factors.

3.84 Combined Familiar Systems and Factor of Influence Method

‘Both the familiar systems and factors of influence methods have their

Weakness when they are used individually. However, combining the two

‘methods produces better results because data are used from the similar
subsystems as well as when new subsystems are designed under different
[actors of influence.
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