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Fault Trees and
Common Cause Failures

4.1 INTRODUCTION

This chapter discusses fault trees, which are to analyze complex systems.
This technique has rapidly gained favor because of its versatility in degree
of detail of complex systems. The fault tree technique was originated by
H. A. Watson of Bell Telephone Laboratories to analyze the Minuteman
Launch Control System. It was further refined by a study team at the Bell
Telephone Laboratories.

Further work on fault tree techniques was carried out at the Boeing
company in which Haasl [37] played an instrumental role. A turning point
took place in 1965 when several papers on the technique were presented at
the 1965 Safety Symposium held at the University of Washington, Seattle,
[37]. Ever since several experts have made further advances in this tech-
nigue.

Again another symposium on the technique was organized at the Uni-
versity of California at Berkeley [2]). A comprehensive hibliography on the
technique is presented in reference 21,

Most of the material presented in this chapter is taken from the listed
fault tree bibliography at the end of this chapter. The second part of this
chapter deals with the subject of common-cause failures.

4.2 FAULT TREE SYMBOLS AND DEFINITIONS

This section presents most of commonly used fault tree symbols and
definitions. For more comprehensive symbols and definitions one should
consult references 65 and 124,

AND Gate. The AND gate denotes that an output event occurs if and
only if all the input events occur,
Outgunt
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OR Gate. The OR gate denotes that an output event occurs if any one or

“more of the input events occur.

Dutpaut

Inpuits

fusive OR Gate. The output of this gate 15 an intermediate event. This

gate denotes that there is no output unless one and only one of the input
events occurs,

Priority AND Gate. It is logically equivalent to an AND gate with the

iception that the input events must occur in a specific order. It is
sented by the following symbaol:

Anhibit Gare. This gate produces output only when the conditional input
is satisfied. The inhibit gate is logically equivalent to an *AND" gate with

iwo input events.

Output fault
(Etfect]

onditional Input
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Special Gate. This gate represents any other legitimate combination of
the input events.

Output

Inputs

Delay Gate. This represents a gate whose output only occurs after a
specified delay time has elapsed.

Output

I

Delay time

Ln >

Ingiut

The Triangle. A triangle denotes a transfer IN or OUT. It is used to avoid
repealing sections of the fault tree. A line from the top of the triangle
indicates “transfer in.” A line from the side of the triangle denotes
“transfer out.”

Transfer “in™

&=

Tree Symbols and Definitions 51

tant Eveni. A rectangle denotes an event which results from the
mbination of fault events through the input of a logic gate.

Basic Fault Event. A circle represents a basic fault event or the failure of
an elementary component. The failure parameters such as unavailability,
bility, failure, and repair rates of a fault event are obtained from the
empirical date or other sources.

Incomplete Event. A diamond represents a fault event whose causes have
‘not been fully developed. This event could be further developed to show
basic contributary failures; however, it is not developed either due to lack
of information or due to lack of interest.

Trigger Event. The house shape symbol denotes a fault event which is
expected to occur,
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The Conditional Event. This is denoted by an ellipse. This symbol indi-
cates any condition or restriction that applies to a logic gate.

<l

Double Diamond Event. This symbol represents an undeveloped fault
event that requires further development to accomplish the fault tree.

The Upside Down Triangle. This symbol denotes a similarity transfer, that
is, the input is similar but not identical to the like identified input.

43 GENERAL PROCEDURE TO ANALYZE FAULT TREES
To develop fault trees, the following basic steps are generally required:

1. Define the undesired event (top event) of the system under considera-
tion.

2. Thoroughly understand the system and its intended use.

3. To obtain the predefined system fault condition cause, determine the
higher order functional events. In addition, continue the fault event
analysis to determine the logical interrelationship of lower level events
that can cause them.

4. After accomplishing steps 1-3 construct a fault tree of logical relation-
ships among input fault events. These are 1o be defined in terms of
basic, identifiable, and independent faults.

To obtain quantitative results for the top event (undesired event) assign
failure probability, unavailability, failure, and repair rates data to basic
events provided the fault tree events are redundancy free.

General Procedure to Analyze Fault Trees 3
A more rigorous and systematic approach requires the following steps:

1. System definition.

2. Fault tree construction,
3. Qualitative evaluation,
4. Quantitative evaluation.

The above steps are outlined in detail in the following sections:

4.3.1 System Definition

To establish the system definition in fault tree analysis is a very difficult
task. A system is normally represented by a functional layout diagram
showing all functional interconnections and components of the system in
question. To draw a fault tree of a system, it is strongly recommended that

 the system boundary conditions be established. However, care must be

taken so that these boundary conditions are not confused with the physical
bounds of the system.
One of the most important boundary requirements is the top event

(undesired event), Therefore, care must be taken to define the system top
~event for which the Fault tree is to be drawn, because this is a major system

failure. In addition to make the fault tree analysis understandable to

others, the analyst must list all the assumptions on system definition and

fault tree.

4.3.2 Fault Tree Construction

The major objective of fault tree construction is to represent system
- conditions symbolically, which may cause the system to fail. Furthermore,

the fault tree construction can pinpoint the system weaknesses in a visible
form. This acis as a visual tool in communicating and supporting decisions
based on the analysis and to perform trade off studies or determine the

- adequacy of the system design.

Generally the analyst is expected to understand the system thoroughly

before he proceeds to construct a system fault tree, To enhance the fault

tree analysis, a system description should be part of the analysis documen-

tation.

There are three generally accepted approaches to construct fault trees:

l. Primary failure technique.
2. Secondary failure technique.
3. Commanded failure technique.

The above techniques are used at the discretion of the reliability analyst
according to the main requirements of the failure fault tree analysis.
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Dark room Top event
Intermediate
Power of f Hoent

Switch fails
1o close

Bulb burnt out

Power failure Fuse failura

Figure 4.1 A primary failure fault tree.

Primary Failure Fault Tree Construction. The failure of a component is
called primary failure if it occurs while the part is functioning within the
operating parameters for which it was designed. To construct a fault tree
by only using primary failures is a straightforward process, because a fault
tree is only developed to the point where identifiable primary component
failures will produce fault events. The following example is presented to
illustrate this technique.

Example 1. Construct a fault tree of a simple system Conceming a room
containing a switch and a light bulb. Assume the switch only fails to close.
In addition, the top event is the dark room.

The system fault tree is shown in Figure 4.1. The basic or primary events
of the fault tree are as follows:

1. Power failure, E,.

2. Fuse failure, E,.

3. Switch fails to close, £,.
4. Bulb burnt out, E,.

The intermediate event is the “power off.” The failure event of main
concern is the top event, labeled “dark room.” Therefore, the major
emphasis of this analysis is toward the darkness in the room. The fault tree
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in Figure 4.1 shows that the input events are gated through OR gates, At
the occurrence of any one of the basic four events E, E,, E,, E,, the
gystem top event (“dark room™) will occur.

Secondary Failure Fault Tree Construction. To include secondary failures
in fault tree analysis requires a greater insight into the system. The fault
tree analysis is carried out beyond the basic component failure level. The
secondary failures are due to excessive environmental or operational stress
plucd on the system components.

Example 2. A simple fault tree with the top event “motor fails to deljver
power” is shown in Figure 4.2. The fault tree shows the primary events
‘such as switch fails to close, internal motor circuitry failure, power failure,

Maotor fails
1o deliver
poawer
C) d) Secondary failures Power off
Bwitch fails Imarnal
o close motor
circuitry falls
Power fails Fusa blows

Figure 4.2 A fault tree with secondary failures,
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Fan does not start

()

Moo falls: to start EI:::lricaJ Power

Command fault
Flgure 43 A basic and command failure fauli tree,

‘and fuse ‘fniiun:. Secondary failures are represented in the rectangle as an
ml:t:mcdlate event. The secondary failures shown in Figure 4.2 occur due
to inadequate maintenance, hostile external environment, external
catastrophe, and so on. These failures are discussed later in this éhapter.

Fault Tree Construction with Command Failures. These failures result from
proper component operation at the wrong time or place. Command failures
are failures of the coordinating events between various levels of the fault
tree from basic failure events to the top event (undesired event or final
event). A typical example of command failure is an erroneous electrical
slgn;al lo an electrical device (e.g., a motor, a transducer). Figure 4.3 shows
the interrelationship among basic and commanded failures. In Figure 4.3

the basic failure is represented by a circle, whe
Y reas the recta
a commanded fault, i

4.3.3 Qualitative Fault Tree Evaluation

This approach uses minimal cut sets of a fault tree. A cut set is defined as
a set of basic events whose occurrence results in an undesired event.
Furthermore, if a cut set cannot be reduced but insures the occurrence of
the undesired event, the set is a minimal cut set, Obtaining minimal cut
sels is a tedious process, since a computerized algorithm is required to
al?tnm minimal cut sets. A qualitative evaluation example is presented in
Figure 4.4,

As shown in Figure 4.4, the intermediate fault event B can only occur if
both events E, and E, occur. In the case of intermediate event C, it can
u_n]}r occur if either event E, or event E, is present. The top event results if
either one of the intermediate event B or C occurs.

General Procedure 1o Analyze Fault Trees L

D~ E E,E; + By

B=E,E, C=E, +E,

© ©® O ®

Figure 4.4 A hypothetical event fault tree.

4.3.4 Quantitative Fault Tree Evaluation
This evaluation uses top event quantitative reliability information, such as

failure probability, failure rate, or repair rate. Component failure parame-
ters are evaluated first, then critical path, and finally the top event.

- There are two accepted methods to determine quantitative fault tree
results:

1. The Monte Carlo simulation method.
2. The analytical solution approach.

In the case of the Monte Carlo simulation, the fault tree is simulated using
a digital computer to obtain quantitative results. Generally, the fault tree
failures are simulated over thousands or millions of trial years of perfor-
‘mance. Some of the main steps required to simulate a fault tree on a digital
computer are as follows:

1. Assign failure data to the basic events.

‘2. Represent the entire fault tree on a digital computer.

3. List failures that lead to occurrence of the top event and the associated
minimal cut sets.

4. Compute the desired end results.
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In the case of the direct analytical solution method, it makes use of the
existing analytical techniques. These techniques are described in the forth-
coming sections.

A Fault Tree with Repeated Events 5

44 ANALYTICAL DEVELOPMENTS OF BASIC GATES

Fault trees are constructed to show system components pictorially and
logically. A fault tree is constructed by using AND, OR, and other gates
that relate logically various basic component faults to the top event. To
represent these logic diagrams in a mathematical form, the Boolean alge-
bra is an invaluable tool. The mathematical expressions for OR, AND, and
Priority AND gates are developed in the following sections.

© ©

 Figure 4.6 A two input AND gate. Figure 4.7 A two input prionty AND
gate.

4.4.3  Priority AND Gate

This is logically equivalent to an AND gate with an exception that its input
_events must occur in a specified order. A two input priority AND gate is
shown in Figure 4.7.

In this situation it is supposed that the event 4, must occur before event
A;. The development of a mathematical expression for the gate is pre-
ted in reference 31.

44.1 OR Gate

The OR gate is represented by the symbols U or +. Any one of these
symbols denotes the union of events associated with an OR gate. A
mathematical representation of two inputs OR gate is shown in Figure 4.5,
The output event B, of an OR gate in Boolean algebra is written as

By=B,+B, (4.1)

where B, and B, are the input events.
45 A FAULT TREE WITH REPEATED EVENTS

4.4.2 AND Gate

In Boolean algebra the AND situation is represented by the symbol - or
M. This symbol represents intersection of events. The two-input AND gate
is shown in Figure 4.6. The output event, B,, of the AND gate in Boolean
algebra is represented by (4.2):

“This type of situation is illustrated in Figure 4.8. The alphabetic letters in
the diagram represent the fault events; 4,, 4,, 4,, and C indicate the basic
fault events; B,, B,, B,, the mean intermediate fault events; T the top
event,

- The fault tree shown in Figure 4.8 can be represented by the Boolean
‘expressions as follows:

BD-EI.HI [_4.2} T-C.Hu (4.3}

B,=B, B, (4.4)

B,=H +8 B|-{JI+A1} [45}
By=(A,+4,) (4.6)

By substituting expressions (4.4) and (4.6) in expression (4.3) we get
T=C-{A;+A4;)(A,+4,) 4.7

It is clearly shown in Figure 4.8 that the event A, is the repeated basic
fault event. Therefore, the expression (4.7) has to be simplified by applying
the basic Boolean algebra properties. i

Figure 45 An OR gate with two input events.
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By

By "y
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Figure 48 A fault tree with repeated events.

Basic Boolean Algebra Praperties
1. Laws of absorption:
A+(A-B)=A (4.8)
A(A-B)=A'B (4.9)
2. ldentities:
A+A=4 (4.10)
A-A=4 (4.11)
3. Distributive laws:
A+B-C=(A+B)(A+C) (4.12)
By applying distributive law of expression (4.12) to expression (4.4) we get
30=A1+A1‘A3 {4;13}

By using expressions (4.10) and (4.11) in (4.3), expression (4.7) reduces to
T-C[Al"'d"z'A]_] {4«1")

An Algorithm to Obtain Minimal Cut Sets 61

Ay + Az A,

Figure 49 A simplified fault tree.

Because of expression (4.14) our original fault tree of Figure 4.8 reduces to
the one shown in Figure 4.9.

Therefore, it is always recommended to reduce the repeated event
expression by applying the Boolean properties before obtaining the
quantitative reliability parameter results. Otherwise, the quantitative results
will be misleading, Algorithms to obtain repeated events free fault tree are
presented in references 1, 27, 33, 66, and 12. One such algorithm is
presented in the section to follow:

46 AN ALGORITHM TO OBTAIN MINIMAL CUT SETS

hldifﬁmm problem associated with the fault tree technique is to obtain
minimal cut sets of a fault tree. Here we present an algorithm developed in
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references 33, 27, and 1. Other computer oriented algorithms may be found
in references 66, 12, and 9.

Before we present this algorithm we would like to present the definitions
of both cut set and minimal cut set. These definitions are taken from
reference 1.

A Cur Set. This is a collection of basic events whose presence will cause
the top event to occur.

A Minimal Cut Set. A cut set is said to be minimal if it cannot be further
minimized but still insures the occurrence of the top event. Minimal cut
sets are sometimes called the minimal failure modes of a system.

The algorithm presented here can be used manually for simple fault
trees. However, for a complex fault tree with hundreds of gates and basic
events, it has to be computerized.

The algorithm is quite efficient. The main features of this algorithm are
that the AND gate always increases the size of a cut set, whereas an OR
gate increases the number of cut sets. These facts will be self-explanatory
in the following solved example. We thought a solved example will be
more useful to understand the practical aspect of this algorithm rather
than presenting the background theory on the topic. Therefore, the readers
interested in the theoretical background should consult reference 33.

Example 3. The fault tree of the hypothetical example is shown in Figure
4.10. The gates are labeled as GT and the basic events as numerals. This
algorithm begins from the gate below the top event in the example. It is
labeled as GT0. As we know from our past basic knowledge on fault trees,
the top event gate may normally be AND or OR gate.

However, if the top event gate, GTO, is an OR gate then each input to
the OR gate represents an entry for each row of the list matrix. Whereas, in
the case of an AND gate, each inpul represents an entry for each column
of the list matrix.

For example, as shown in Figure 4.10, the top event gate, GTU, is an OR
gate, therefore, we begin the formulation of the list matrix by listing inputs,
GTI and GT2 (output events) in a single column but in separate rows as
follows:

Any one input of an OR gate will cause the occurrence of an output
event. Therefore, the inpuis of the GTO are the members of separate cut
sets.
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GTO

@ ]
' ©

> 75
R OO0

Flgure 4.10 An cvenl tree.

A simple rule to follow to develop this technique is to replace each gate
by its inputs. The inputs may be the outputs of gates or basic events until
all the fault tree gates are replaced with the basic event entries. At this
stage the list matrix is fully completed.

For this example, to obtain a fully constructed list matrix we now
replace the OR gate GT1 by its input events as separate rows, as indicated
below by the dotted line. The dotted line is marked as step 2:

____________
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Similarly, replace, GT2, by its input events as indicated by the dotted line

marked as step 3;

In similar fashion, we proceed with the gate, GT3. It is an AND gate,
therefore, it is replaced with its input events as indicated by the following
dotted line marked as step 4;

Since GTS5 is an OR gate, it is replaced by its input events 7, 8 shown as
step 6 below:

_________

Similarly, the gate, GT6, is also an OR gate; therefore it is replaced by its

{n Algorithm to Obiain Minimal Cut Sets

events B and 9 (marked as step 7) as follows:

‘As shown above in the list matrix, the cut set 8 is a single event cut set.
‘Therefore, eliminate cut set {3, 8} to obtain the following minimal cut sets:

IS I

4,5

Figure 4.11 A repeated event fault tree.
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Finally, if there is no repeated event in the list matrix then the cut sets
generated by this method will be minimal cut sets. If this is not so, then
eliminate the nonminimal cut sets (i.e., which contain other sets) from the
final list matrix.

The reduced fault tree of the above list matrix is drawn in Figure 4.11.
This is a repeated event free fault tree. Now one may proceed to obtain the
quantitative measures of the top event.

4.7 FAULT TREE DUALITY

To reliability engineers it may be of great interest to obtain the dual Fault
tree. For example, in the case of top event “A system does not fail” is the
dual of “system failure."” Generally the occurrence of the top event is of
interest more from the system safety view point to the safety analyst. The
case of nmonoccurrence of top event, may be of more interest to the
reliability analyst.

As words “occurrence” and “nonoccurrence™ of a top event suggest
duality, it is simple to obtain a “success tree” from a “fault tree.” To
obtain a success tree (ie., dual of a fault tree) replace all AND gates with
OR gates in the original fault tree and vice-versa. In addition, the top,
intermediate, and basic fault events are to be replaced by their correspond-
ing duals (success events). In other words, the occurrence events with
nonoccurrence events. For example, if the top event was “room dark”™ then
it is to be replaced with the top event “room lit.”

The minimal cut sets of the original fault tree will be minimal path sets
of the dual fault tree (success tree). A path set may be defined as a set of
basic events whose nonoccurrence contributes to the nonpresence of the
top event. In the case of a minimal path set, it is defined as a set that
cannot be further reduced and still retains its path set characteristics. The
algorithm presented in the previous section to obtain minimal cut sets of a

fault tree can be applied to obtain the minimal path sets of the dual fault
tree.

48 PROBABILITY EVALUATION OF A FAULT TREE

Once the minimal cut sets or the redundancy free events of a fault tree are
obtained, then one can proceed to evaluate the probability of the top
event. However, before we proceed to evaluate the probability of a fault
tree, we will review the basic concepts of probability laws as applied to
logic gates.

Two basic operational laws of probability are presented by solving OR
and AND gates.

Probability Evaluation of a Fault Tree

T=at+h

@ Figure 412 A two-inpul OR gate.
481 OR Gate

i il lyzing a two input
To explain the OR gate probability concept we arc ana a
OR g:te as shown in Figure 4.12. For Figure 4.12, the probability expres-

sion for the top event is given by
P(T)=P(a)+P(b)~P(ab) (4.15)

If @ and b are statistically independent events BJ.'Ed P(a)- P(b)is very small,
then the above expression (4.15) can be approximated as

P(T)=P(a)+P(b) (4.16)

In the case of n number of inputs OR gate, the expression (4.16) may be
generalized to,
F{a+b+r+~~~}"_-'P{n]+PUa}+P{c‘_I+--- (4.17)
imation 1 i ion of expression
The above approximation is good if the summaton Ssil
(4.17) is very small, which implies that the basic event prut:.lahﬂmns
P(a), P(b), P(c)," - + are very small. However, e.x]:r:ssmn (4.17) yields ex-
act result if events a, b, ¢, - - are mutually exclusive. The exact expression
of (4.17) is presented in Section 4.12.

4.8.2 AND Gate

A two input events AND gate is shown in Figlurg 4._13. In the case of
statistically independent events a and b, the muluphcatmftrrulﬁ of pfohfi-
bility are applied to obtain the following top event probability expression:

P{ab)=P(a) P(b) (4.18)
For n input AND gate, the above equation can be generalized as
P(a-b-c---)=P(a)P(b)P(c) - (4.19)
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T=ah

© Figure 4.13 A two-input events AND
gate,

Example 4. Evaluate the top event failure probability of the fault tree
shown in Figure 4.14. Assume, the basic events 4, B, C, D, and E are
statistically independent and P(A)=P(B)=P(C)=P(D)=P(E)=". The
fault tree of Figure 4.14 shows that it does not have any repeated basic
events. Therefore, the probability of occurrence can be evaluated at the
output of each gate. However, if the repeated events in each fault tree were
present then first of all one must eliminate the repeated events (i.e., obtain

7,

o

©

°

Figure 4.14 A hypothetical event tree.

b

v Evaluation of a Fault Tree

currence at the output of each gate.

ifferent methods.

event expression is given by

T,=T,+T,
T,=CD
T. — Ta‘ E
T,=A+B

Ty=E(A+B)+CD

P(T,)=P(EA+EB+CD)

P(Ty)=P(C)-P(D)=1/4-1/4=1/16

P(T,)=P(T;)-P(E)=T7/16:1/4=T7/64

P(T,)=P(T,)+P(T,)—P(T))-P(T,)
=7/644+1/16—7,/64-1/16=169/1024

*. Probability of occurrence of top event= 169 /1024

cut sets of the fault tree), before taking the probability of

Method 1. Write the expression for the top event in terms of basic events.
Obtain the probability of occurrence of this expression as follows. The top

(4.20)

(4.21)
(4.22)
(4.23)

(4.24)

(4.25)

~ Now expression (4.25) can be expanded to obtain top event probability
expression. If we assume the statistical occurrence of failure events then we
can obtain the quantitative probability result of the top event.

‘Method 2. This is an alternative method to obtain the quantitative value
of the top event probability by calculating the intermediate events proba-
bilities and then using these results to obtain the top event probability
result. One must note here that we assume that the failure events are
statistically independent. By using expressions (4.15) and (4.18), the inter-
mediate and top even! quantitative results and expressions are as follows:

P(Ty,)=P(A)+P(B)—P(A)-P(B)=1/4+1/4—1/16=T7/16

(4.26)
(4.27)
(4.28)

(4.29)
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Ty

Figure 4.15 A lault tree with repeated event D,

Exanp{e 5 : Suppose in Figure 4.14, the event E is replaced by event D as
shown in ngnn: 4.15. To obtain the top event probability of the fault tree
2:::::; 2:;::: 4:“ l:; we a;;ptlly r_m:thnd | n[rthe premus c:‘:amp{:. The top
posd ek rms of basic events (without eliminating the repeated
Ty=(A+B)D+CD (4.30)
Thus,
Ty=DA+BD+CD (4.31)
By taking the probability of the top event, we gel
P(DA+BD+CD)=P(DA)+P(BD)+P(CD)~ P( DABD)
~P(DACD)~P(BDCD)+ P(DABDCD)
(4.32)

Probabilicy Evaluation of a Fault Tree k)

The redundancy-free expression with statistically independent events is
given by
P(DA+BD+CD)=P(A)P(D)+P(B)P(D)+P(C)P(D)
—P(D)P(A)P(B)—P(A)P(C)P(D)
~P(B)P(C)P(D)+P(A)P(B)P(C)P(D)
(4.33)
.P(DA+BD+CD)=1/16+1/164+1/16—1/64
—1/64—1/64+41/256=37/256

The probability of occurrence of the top event is
37/256
However, if one eliminates the repeated events first then the fault tree

shown in Figure 4.15 reduces to the one shown in Figure 4.16. The top
event expression for Figure 4.16 becomes

where

T,=A+B+C (4.35)

Ty

© 3.-
i

Figure 4.16 A repeated event free fault tree.
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For the statistically independent events (4.34) and (4.35), probability
expressions are given hy

P(DT,)=P(D)-P(T,)=37/64-1/4=37/256 (4.36)

where P(A+B+C)=P(A)+ P(B)+P(C)~ P(A)P(B)— P(A)P(C)—
P(B)P(C)+ P(A)P(B)P(C)=37/64

4.8.3 Concluding Remarks
In cases where the basic event failure probabilities are very small, the
mability to remove dependencies will not introduce a significant error in
the end result [65]. However, one must try to remove all the dependencies
in a fault tree before obtaining the final probability result.

4.9 FAILURE RATE EVALUATION OF FAULT TREES

This section outlines, how 1o obtain the failure rate of the fault tree top as
well as the intermediate events. The following assumptions are made to
develop this procedure;

1. The basic events (system components) are not repaired.

2. The fault event occurrence times (or component failure times) are
exponentially distributed.

3. The fault tree is redundancy free. In other words, it contains no
repeated events.

4. The basic fault occurrence or component failures are statistically inde-
pendent.

The fault tree OR and AND gate failure rate expressions are developed
by using the following relationship:

1 4R
A(t)=~ mh% (4.37)

where A(1)=the failure rate (hazard rate) at time ¢
R(1)=the component or system reliability

‘Fnr the component constant failure rates, the OR and AND gates
failure rate (hazard rate) formulas are developed in the following sections.

Rate Ecaluation of Fault Trees n

4.9.1 OR Gate

Logically this gate corresponds to a series system. A series system reliabil-
!it‘q_.r can be obtained from the following equation:

Rs= ]I R, (4.38)

=]

where R, =the constant reliability of the ith component
R ¢=the series system reliability
n=the number of components

‘When components failure times follows exponential failure laws, (4.38)

Rs{:}-expu(é h,.)r (4.39)

re  A,=constant failure rate of the ith component
i =the time

Substituting (4.39) into (4.37) yields the series system hazard rate

A= é A (4.40)

f=

- It can be recognized from the series system failure rate equation (4.40)
that an OR gate output is simply the sum of its inputs.

4.9.2 AND Gate

5Tllc AND gate corresponds to a logically connected parallel configuration
system. A parallel network reliability is given by the following equation:

R,=1-[] (1-Rr)) (4.41)
|

‘where R, =the parallel system reliability
n=the number of components
R,=the ith component reliability

In the case of components’ constant failure rates, the above equation
mes

R ()=1- [ (1-e*) (4.42)
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where A, =the ith component constant failure rate
f=the time

After substituting (4.42) into (4.37), we get the following [53] results:

r=( £ 0] 1)

-1
(4.43)

where 1 /z,=(1—e ™)  for j=1,23,....n

Example 6. Evaluate top event failure rate of the fault tree shown in
Figure 4.17, for a 100-hour mission. Assume

'hl .11-?‘]-}“-15-}"6—}'1‘ =0.001 [ﬂj]mﬂfhuur

By utilizing (4.40), the output event failure rates of OR gates GT1, GT3,

=Ry + by + kg # Ay + Aalt)

GTO

e

Figure 4.17 A hypothetical failure rate evaluation fault tree.

 Faiture Rate Evaluation of Fault Trees
(T4, and GTO are evaluated as follows:

Aro=Agp +A (1) +A 5 =0.0040082 failure /hour (4.44)
Apy=A,+A,=0.002 failure /hour (4.45)
Apy=Ag+ A =0.002 failure /hour (4.46)

and
ra=A3+ A =0.002 failure /hour (4.47)

‘Similarly, we utilize (4.43) to obtain the output event failure rate of the
AND gate GT2 as follows for a 100-hour mission:

D(zr—DAr
Zy2ypy— 1

Alz,—

=0.0000082 failure /hour (4.48)

Apalr)=

‘where z,=1/(1—e ") for i=7,T4.
~ When an AND gate output event is an input event to another AND gate
then the hazard rates of all the intermediate (including the top event)
ents can only be obtained from the reliability function of these events. In
other words, the hazard rate or failure rate result obtained for an AND
gate output event cannot be used as an input to another AND gate.

If two or more AND gates are encountered in series, it is strongly
ised to establish the reliability function at the output event level of each

gate then apply the hazard rate formula of (4.43).

Example 7. A two-AND-gates-in-series fault tree, shown in Figure 4.18, is
tequired to compute the failure rate of the top event for a 100-hour
mission. Assume A, =X,=A,;=0.001 failure/hour and the basic failures

statistically independent. By utilizing (4.43) we get

Aamlt)= i =0.00018 failure /hour (4.49)

z=1/(1—e"™)

Gates GT1 and GTO output event unreliability and reliability equations
given by
(4.50)

(4.51)

Pory(t)=P(1) Py1)
Ravolt)=1=P(1)-Py(1)-P5(1)
P,(1)=the unreliability of the event i at time ¢ for i=1,2,3

Pgr,(1)=the unreliability of the gate, GT1 output event
R 1ol 1)=the reliability of the top event
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Rl =1 =P (P )P )

GTO

I

Por it = Py (6h# (1)

Figure 4.18 A [ault tree with two AND gates in series.

To obtain the top event hazard rate, substitute (4.51) into (4.37). Since
Ay=A,=A,;, we use (4.43) to obtain the following top event hazard rate
result:

3A

4.52
iz 4 ( }

Agrolt)= 1 =0.00002 failure/hour

where z=1/(1—e),

410 FAULT TREE EVALUATION OF REPAIRABLE
COMPONENTS

In this section we are concerned only with the fault tree evaluation of
repairable components [22]. This type of situation is frequently encoun-
tered in real life where the system components are normally repaired
whenever they fail. The method presented in this paper assumes that the
component failures are statistically independent and that the component
failure and repair rates are constant; in addition, the repaired system
components are considered as good as new. Furthermore, this method is
only applicable to the cases where one may be concerned with calculating
the top or intermediate event steady-state unavailability, limiting mean
repair rate, limiting mean failure rate, and steady-state failure rate. Another
major assumption of this method is that it assumes that fault trees are
redundancy [ree, (i.e., no basic repeated events are allowed).

 Fault Tree Evaluation of Repairable Componenis b
In most cases a redundancy-free expression can be obtained by applying
pasic Boolean reduction techniques. For certain cases it is‘ si;npler 1o
obtain Boolean indicated cut sets (BICS) [33] and then eliminate the
redundant cut sets by inspection. It may also be useful to climinntr.-_ as
many repeated (redundant) events as possible at the fault tree construction
stage and eliminate the remaining ones with the Boolean reduction Fech-
piques. However, if some of the repeated events are impossible to eliminate
“and if the probability of occurrence for basic events is less than 0.1 [65],
the error generated in the end result will be either negligible or of very
- small magnitude.

" The main advantage of applying this technique is that, the original
‘dependency free fault tree is unchanged; and the OR and AND gate
steady-state unavailability, limiting mean failure rate, limiting mean repair
rate, and limiting steady-state failure rate formulas, can be applied directly
to both the intermediate and top events of the fault tree. These formulas
[128] for the OR and AND gates are discussed in the following sections.

4.10.1 OR Garte
This gate simply represents a series system with n nonidentical repairable
components. The OR gate output event unavailability 4,, can be obtained
from the following equation:

4,=1-11 (1-4)

(4.53)

where A, =the unavailability of the repairable component i
X =a set of n number of components

For a repairable component with constant failure and repair rates the
equation for the unavailability 4 may be expressed [129] as follows:

A= ﬁu—e—***'"} (4.54)

where (=time
A=the component failure rate

p=the component repair rate

For large 1, the above equation becomes

A= —— (4.55)

A
A+p
By substituting (4.55) into (4.53) we obtain for the series system

My

At (4-55}

A=1-]]

X
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Similarly, the following OR gate output event, limiting failure rate, limiting

mean failure rate, and limiting mean repair rate equations, is
A,,= { series system steady state availability, (1 -4, )}
x {series system failure rate, A, )

=(1-4,) 2 A, (4.57)

EX

where A, is the series system steady-state failure frequency:

Am= X A, (4.58)

iEX

where A, =the series system limiting mean failure rate
fi, = {series system steady-state availability, (1—A4,)) X (series
system failure rate, A, ) /(series system unavailability, 4, ).

: A
#lﬂ'z T {4.59}
where ji, . is the series system limiting mean repair rate.

4.10.2 AND Gate

An AND gate is the representation of a parallel system composed of n
(number) of nonidentical components. Since the parallel system is a dual
of the series system AND gate output event, steady-state unavailability,
stmr.‘i}ramtc failure rate, limiting mean failure rate, and limiting mean
repair rate equations can be obtained directly from (4.56), (4.5T), (4.58),
and (4.59):

i H [] W }
= PR (4.60)
where p denotes a parallel system.
M= 3 07 (@s)
=r's
: A
Apm=—2=
i s (4.62)
and
iipu- 2 My (4.63)
(L= f

Fault Tree Evaluation of Repairable Components i

Similarly, the respective equations, in the case of a m-out-of-n identical
inputs AND gate are

A= 2 (M)A Q-2 (4.64)
n! (LAY =

A"‘""E{u—m}!{m—l}! (1/p)" 4 (46)

e BN Gays . (4.66)
(n=mtm=11 X (7)o a/m

and

= (/A ) (4.67)

(n=mt(m=11 3 (F)a/ny'a/m

It is easily seen from the above equations that, for identical inputs OR and
AND gate, the equations are special cases of the m-out-of-n inputs AND
gate equations. In the case of an AND gate, m takes on the value of the
number of inputs to that AND gate, whereas in the case of an OR gate, m

is equal to unity.

Example 8 Suppose the objective in Figure 4.19 is to obtain the top event
steady-state unavailability, steady-state failure frequency, limiting mean
failure rate, and limiting mean repair rate. Assume that all of the basic
events of the fault tree have the same failure and repair rate respectively,
that is, A=0.,001 failure/hour; and p=0.05 repair/hour. Furthermore,
assume that all of the basic events are statistically independent.

From (4.55) the single component steady-state unavailability is

_ A _0.001
A+u 0051

In the case of an OR gate output event GT1, the unavailability from (4.53)
is

A =0.02

A,=0.04
From (4.57),

My
p‘i+}"r'

2
Au=(A+A) 11

i=1

=(),0019 failure /hour
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A = 0.0404

Mg = 000204 failure/Mour
Ham = 0.0488 repair/hour
A = 0.00195 failure/hour

GT2
A = 0,001 feilures/hour X = 0.001
g =0.06 repairs’hour o =008 ) : 31?;1
A =0.02 A=002 T-002
A =0
u = .05
A =02

Figure 4.19 A hypothetical fault tree.

Equation 4.58 yields

A, =0.002 failure /hour

The limiting mean repair rate fi, is obtained from (4.59)

(i)

2w

2
=1 w/O+w)

=0.0475 repair/hour

Similarly, for the AND gate out
e Al put event, GT2, and top event OR
S‘lﬁ'g, lh: following information was calculated from (4.60), (4.61), (4.!:;;
63), (4.56), (4.57), (4.58), and (4.59), respectively. In the case of an AND

Lambda Tau Method
gate GT2,
A,=0.0004
A,,=0.00004 failure /hour
A ,m=0.000041 failure /hour
and

fi,m=0.01 repair/hour
Similarly, in the case of the top event OR gate, GTO
A,=0.0404
A,,=0.00195 failure /hour

%,,,=0.00204 failure /hour

and
i, ="0.0489 repair /hour

411 LAMBDA TAU METHOD

This is another method that takes into consideration the repair of the basic
components. The Lambda Tau technique requires redundant-free expres-
sions from the fault tree diagram. In other words the basic events of the
tree must not be repeated events. In many cases it may be obtained by
Boolean substitution reduction techniques. However, this method incorpo-
rates many other restrictions. The Lambda Tau method calculations for an
AND gate are based on the coexistence of all failures, and the calculations
for an OR gate are based upon at least one failure among n number of
possible failures. The basic formulas for the AND and OR gate parameters
are derived in flow research references 124 and 65. The main restrictions of
this technique are (a) /7T is small, where 7 is repair time of a component
in question, where T is the time interval of interest; (b) the basic event
failure rates are very small; (c) the product of the failure rate and repair
time is very small (i.e., must be less than 1); (d) the product of the failure
rate and the mission time is very small (i.¢., must be less than | preferably
0.1); (e) the failures and repair rates are constant; and () failures occur
independently.

The basic formulas for reliability of the AND (AND Priority) OR gates
are derived in reference 126. AND and OR gate parameter formulas are
presented in the following sections.
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4.11.1 AND Gate (Coexistence of All Failures)

The general formula of the probability, Pyyp,, that # failures coexist in a
small time interval, di for the first time can be obtained:

L n
Pano= [IA] Il 4yt eomympe oo i (4.68)
jm] j=32

where n is the number of components and ), is the constant failure rate of
the ith component.

Thl:' AND gate output event hazard rate (failure rate) and repair time
equations are given by

n " " =1
Aawp= A T2+ I 7+ [T+ (4.69)
i=] =3 = =]
iseven
and
1
TAND™ —5 (4.70)
pL
i=1

It is emphasized that (4.68), (4.69), and (4.70) are only valid f
tions outlined in the earlier section i

4.11.2 OR Gate (At Least One Failure Among n Possible Failures)

This gate represents a system with # components connected in a series
configuration. The probability that one or more failures occur is

Por(1)=1—g!Zhor (4.71)

The OR gate output event failure rate and repair time are

Aor= 21.1;. (4.72)
-
and
"
2 A,
i=]
Tor = (4.73)
2 A

AlA + 81+ D)

AlA+ B c+b

' O O

» o= 0,001 failurahour & = 0,007 failure/hour
r = 5 hours

A = 0.001 failure/hour
1 = B hours 7= 5hours

oo

A = 0,001 failure/hour A= 0,007 failure/hour
r =5 hours r = 5 hours

Figure 420 A fault tree containing repeated events.

As for the AND gate output event formulas, these equations are only valid
under the assumptions outlined in the sections earlier.

Example 9. A fault tree containing a repeated event is shown in Figure
4.20. Assume the occurrence of basic fault events is statistically indepen-
dent; then obtain the top event quantitative measures of the Lambda Tau
technique.

As it can be realized from the fault tree that the repeated event 4 has to
be eliminated before we can apply the Lambda Tau technique to compute
Quantitative reliability measures.

The output event expression of the gate, GT'l, can be simplified by
applying the following Boolean identity:

A(A+B)=A (4.74)

Therefore the simplified fault tree of Figure 4.20 becomes as shown in
Figure 4.21. To determine the top event quantitative measures of the
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AIC + D}

A= 0.001 failurehour
= 5§ hours

ollc

A= 0.007 failure/hour A = 0.001 failure/hour
A = & hours 7 =5 hours

Figure 421 A simplified fault tree.

refiunod fault tree sirmv:rn in Figure 4.21, the OR gate, GT2, output event
failure rate and repair time are obtained by using (4.72) and (4.73)

A 672=2A=0.002 failure /hour (4.75)
Tera -f--s hm [4.?'6‘]

To ?btnin the qunnﬁtqﬁve measures of the top event, failure rate and
repair time, use expressions (4.69) and (4.70), respectively:

Aﬁm-}-“}tm{ f‘ +Tm}-u+m faituufhﬂu-r {4.7‘?}
O
Toro™ - 24~ =2.5 hours (4.78)

For a 100-hour mission, the top event probability that n fai ist i
For a ) ailures coexist
time interval dt for the first time is i

Foro=Agrol
=0.00002 x 100=0.002 / mission (4.79)
where A is obtained from (4.77).

Repairable Component Foult Tree

4,12 REPAIRABLE COMPONENT FAULT TREE EVALUATION
WITH KINETIC THEORY

This is another method to evaluate reliability indices of the fault trees with
repairable components. Before applying the kinetic theory, the minimal cut
sets of a fault tree are to be determined. This approach was originated in
reference 68. In this section assume that the component failures are
statistically independent. The major steps to be followed for this technique
are outlined below:

Step 1. Construct the fault tree of a device, a subsystem, or a system in
question.

Step 2. Determine minimal cut sets of the constructed fault tree.

Step 3. Develop each primary event information of a minimal cut set fault
tree.

Step 4. Similarly, develop each cut set information of a minimal cut set
fault tree in question.

Step 5. Finally, evaluate the fault tree top event information.

To obtain basic cut set and top events quantitative reliability information
the following notations are used.

Basic Events.

A= the constant failure rate of the basic event or component
p= the constant repair rate of the basic event or component
f= mission time
F(t)= probability of a component failed condition at time ¢
Fy(r)= probability that a component has its first failure by time ¢
W= probability that a component fails or a basic fault event occurs in
time interval [¢, 14+ Af]
W,= probability that a component has its first failure in time interval
(¢, t+Ar]

Cui-Sets.

A(t)= the cut set failure rate at time ¢
p'(t)= the cut set repair rate at time ¢

Tap Event.

Ap(1)= the top event failure rate at time ¢
pe(t)= the top evenl repair rate at time f
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AB+AC+D

2
S =
©

Figure 422 A hypothetical fault tree.

In a detailed form the kinetic tree theory is described in reference 69. Here
we simply deal with the practical aspect of this theory, with assumptions
that the basic failure rate, and repair rates are constant and the failures are
statistically independent [130]. To demonstrate the practicality of this
approach, the following hypothetical example is presented in Figure 4.22.

Example 10. For the fault tree shown in Figure 4.22, it is necessary to
obtain the top event unavailability and failure and repair rate information.
For the fault tree shown we develop the required information [130] for the

basic events, cut-sets, and top event. One should note here that the
constructed fault tree has no repeated events.

BASIC FAILURE EVENT INFORMATION. Assume that a repairable component
has constant failure and repair rates: therefore, by applying the Markov
process concept we obtain the following differential-difference equations

Repairable Component Fault Tree ”
e
Failure
Setsbn state, F
state, A A

Figure 423 A single component state space diagram.

for the component operational and failure states as shown in Figure 4.23.

A(t+At)=(1—AA1)A(1)+p A1 F(t) (4.80)
Fli+At)=(1—pAr)F(r)+A ArA(r) (4.81)

In the limiting case the above equations become
ﬂﬁiﬂn—u{;}ﬂm) (4.82)
Dy F()+AA() (4.83)

At A(0)= 1, other initial condition probabilities are ﬂ]l:ll] to zero, where
A(t) is the component availability at time ¢ and F(¢) is the component

" unavailability at time 7. By solving the above differential equations we get

= . A pr 4.84)
A“]_h+p+h+pe {
n:.f}ﬂ%}l -%‘ut"’””' (4.85)

For large ¢, (4.85) becomes
F=— (4.86)
To obtain the failure probability at time ¢, set p=0 in (4.85):
F(t)=1-e™ (4.87)

For small At the above equation may be approximated to
F(r)=ht (4.88)
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Now, we define the following expression for the probability that a compo-
nent fails in a time interval [r, t+Ar]:

W(r)Ar=[1-F(1)]AAr (4.89)

One should note that (4.89) is the second part of the right-hand side of
(4.81). By substituting (4.85) into (4.89) for large r we get

w-wmm-xf—#mm) (4.90)

Similarly, for a nonrepairable component (i.e., p=0) substitute (4.87) into
(4.89) for small As; we get
W= W, (t)-Ar=) At (4.91)

CUT SET INFORMATION. To demonstrate how 10 obtain the cut set informa-
tion we will use the fault tree example shown in Figure 4.22. The top event
expression of Figure 4.22 is composed of the following cut sets:

Top event=AB+AC+D (4.92)

Now, consider the cut set AB in (4.92). Here, we are interested to find the
probability of first failure in time interval [¢, 1+ At).

There are two possibilities to encounter failure of cut set, AB, in a small
interval Ar (here we assume that only one failure occurs in a small time
Ar):

. A is in Failed state and B fails in Az
2. Bis in failed state and A fails in Ar

Thus we define, W, ,, as the probability of first failure of the cut set AB in
the time interval [r, 7+ At). Therefore,

Won=EWy+ FoW, (4.93)

In the case of repairable events A and B substitute (4.86) and (4.90) into
(4.93):

A, Aghty

W, .= - - Ay
e U"-,f"'i'-'uq:' {?‘j‘+."j}
'}".I‘ ,‘A
+ . <A 4.94
Oatig) (atiph i
ld’"ﬂ
- + Al 495
M at i) (Agrp) Hatia) 5

Repairable Component Fault Tree
Similarly, for cut sets AC and D we obtain the following expressions:
Wie=F W+ FW, (4.96)
Aihe 97
= petp,tar (4.97)
Wac (A g+ Actpe) thctha
and
Wp=Wp (4.98)
Aphp
W.om—2lD 4, (4.99)
2 {hp+Fp}

To determine probability that the cut sets AB, AC, ‘a‘nld D are in faﬂud
state one should multiply the individual event probabilities for the statisti-

cally independent events. Thus, by utilizing (4.86), we obtain

Adds 4.100)
fan= E = X w0 i) :

Adde 4.101)
Fac=FiFe= (A +p NActne) W
Fy= Ap (4.102)

hp+FD

Suppose, if event B of the cut set 4B is not repaired, th:fl we will denote
with a small alphabetic letter, . Therefore one may rewrite (4.93) as

Wo=FW,+ F,W, (4.103)

In the case of repairable and nonrepairable events 4 and b, mpectivcl;,r.
substitute equations (4.91), (4.90), (4.86), and (4.88) into {4.103) to obtain

19

A‘A ATA
St At 4.104)
WAQ J"J"'F,‘ {Abﬂ'r]'b{lbf}“d_'_h‘ {
Hence,
W, = Adks (141 ,) At (4.105)
e Agtny,
To obtain cut set failure rate we use (4.89)
) PR Ll (4.106)

1=F(t)
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Similarly, the cut set repair rate is obtained by using equation (4.107);

W(r)

F'{f}‘*m

(4.107)
Since

W=W(1)d (4.108)

Now consider the cut set AB, since W, ; is known from (4.95) theref,
substitute (4.95) into (4.108) to get AR (4.95) therefore, we

AaA g
L“‘A""‘ﬂ”a"’#;] “‘4"‘#3}

Waalt)= (4.109)

To obtai i i i
wom tain cut set AB repair rate, substitute (4.100) and (4.109) into (4. 107)

Pasg=p tpy (4.110)

s "

- AAalp,+pg)

L e e (4.111)

In similar fashion, one can obtain the failure and -
AC and D as follows: repair rates for cut sets

oo MaAe(patpe)

e Aot Actp,pc (4.112)
Ap=Ap (4.113)
and
Bac=(p +pc) (4.114)
Wp=Hp (4.115)

TOP EVENT INFORMATION. To obtain the top event probability informa-
tion, one has to take advantage of the union of the minimal cut sets, since
the occurrence of any one of the cut sets will cause the top evenl to occur.

Repairable Component Fault Tree
The probability of the union of the top events is given by

P{T,+T,,+~--+1:,}=[F[T,}+F{m+---+P[?;,}] «—n terms
-—[P{TJ,}+P{T,T_-,}+-~+P r 1;) ._(’;_')urms
i
+| P(T,TyT3) 4 P(T\ T, T )+ - +P( m_;'r,) [’;)m
ij#k
e (DT Ty T,)] Af) term (4.116)

Consider now the following top event minimal cut set expression of Figure
4.22:

T=AB+AC+D (4.117)
‘The probability expression of the above expression becomes

F(AB+AC+D)=F(AB)+ F(AC)+F(D)—F(ABC)—F(ABD)
— F(ACD)+ F(ABCD) (4.117)

For statistically independent events
_F‘F'-_-FD'FF‘F‘FEFD [4.1'8}

Frov

Now consider (4.117); it contains event 4, which is common to both cut
‘sets AB and AC. The occurrence of this common event A4 will cause the
simultaneous failure of cut sets AB and AC, if the component A fails in
interval [r, t+Ar].

The probability expression of this intersection is given by:

W oge= W, FyFe (4.119)

Therefore by substituting (4.86) and (4.90) into the above expression we get

AdsAcha At (4.120)

Wasc™ (X Faa) Mgt ua)Actic)

When obtaining, Wyqp, one should be careful that it is composed of two
States:

1. All cut sets are operating at time 1.
2. A cut set fails in a time interval [1, r+At].
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Thus we write an expression for W, as follows:
Wrop= Wea(1 = F)(1 = Fp) + W, (1 - Fa )(1-Fp)
+Wy(l—F, F)(1-F,F;)
= Wiscll—Fp) (4.121)
The term Wy(1 —F, F3 i1 — F, F.) of (4.121) becomes in simplified form
Woll = Fy Fy—F,Fe— F,Fy )

The top event failure and repair rates, A 1, and i

! and i P Birop, for Figure 4.22 ma
I::e obtained by substituting (4.121) and (4.118) into the following cxpr;
sions:

W.
p el PrrypEa sl ) Ao
TOP A(1—Frop) (4.122)
and
-
L (4.123)

ATor= A0 Frop

4.13 ADVANTAGES AND DISADVANTAGES OF THE FA
TREE TECHNIQUE e

Like any other technique, the fault tree technique has i
A a s
e sindSson q its advantages and

Adeantages.

L. It provides insight into the system behavior.

2. It requires the reliability anal
¢ | yst to understand the system thoro

and deal specifically with one particular failure at a time. L
3. It helps to ferret out failures deductively.
4, _It vaide_s a visibility tool to designers, users, and management to

Jjustify design changes and trade-off studies.
3. It provides options to perform quantitative or itati iabili

nalitat
6 qualitative reliability

6. This technique can handle complex systems more easily.

1, This is a costly and time-consuming technique.

2. Its results are difficult to check.

'3, This technique normally considers that the system components are in
either working or failed state. Therefore, the partial failure states of
components are difficult to handle.

4. Analytical solutions for fault trees containing stand-bys and repairable
priority gates are difficult to obtain for the general case.

5. To include all types of common-cause failures it requires a considerable
effort.

4.14 COMMON-CAUSE Fi[LUH.ES]

As the field of reliability engineering is becoming a recognized discipline in
engineering so is the awareness of associated problems such as common-
cause failures, which were overlooked some years ago. In recent years the
common-cause failures have received widespread attention for reliability
analysis of redundant components, units or systems, because the assump-
tion of statistical-independent failure of redundant units is easily violated
in practice [93). It may easily be verified from reference 116. This paper
reports frequency of common-cause failure in the U. S. power reactor
industry: “Of 379 components failures or groups of failures arising from
independent causes, 78 involved common-cause failures of two or more
components.”

A common-cause failure is defined in reference 105 as any instance
where multiple units or components fail due to a single cause. Some of the
common-cause failures may occur due to:

/1. Equipment design deficiency. This includes those failures that may have
been overlooked during the design phase of the equipment or system,
and may be due to the interdependence between electrical and mechani-
cal subsystems or components of a redundant system.

"'& Operations and maintenance errors. These errors may occur due to

improper adjustment or calibration, carelessness, improper mainte-

nance, etc.

/3. External normal environment. This includes causes such as dust, dirt,
humidity, temperature, moisture, and vibration. These may be the

| normal extremes of the operating environment.

4. External catastrophe. This includes natural external phenomena such as
flood, earthquake, fire, and tornado. The occurrence of any one of these
events may affect the redundant system at a plant.
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V5. Common manufacturer. The redundant equipment or component pro-
cured from the same manufacturer may have the same design or
fabrication errors. For example, the fabrication errors may occur due to
use of wrong material, wiring a circuit board backward, poor soldering,
elc.

~6. Common external power source, A common-cause failure may occur due
to the common external power source of the redundant equipment,
subsystem, or unit.

" Fuf:crianaf deficiency. This may occur due to inappropriate instrumen-
tation or inadequacy of designed protective action.

There are several examples of common-cause failures in nuclear power
systems [114]. Some spring loaded relays in a parallel configuration fail
simultaneously due to a common cause. Furthermore, due to a mainte-
nance error of incorrectly disengaging the clutches, two motori valves
are placed in a failed state/In addition, asteam line rupture causing
multiple circuit board failures|is another example. The common cause is
the steam line rupture in this case. In some cases instead of triggering a
complete redundant system failure (simultaneous failure), which is the
extreme case, the common cause may produce a less severe but commen,
degradation of the redundant unit. This will increase the joint probability
of failure of the system units. It may be due to harsh accident environ-
ment. In this degradation state, the redundant unit may fail at a time later
than the first unit failure. Because of the common morose environment,
the second unit failure is dependent and coupled 1o the first unit failure.

Although the existence of common-cause failures has been recognized
fora lnng time, no concrete steps were taken to represent them systemati-
fmﬂy until the late 1960s, Most of the literature on the subject is presented
in bibliography on common-cause failures [93].

Some of the newly established theory and models to analyze common-
cause are presented in this section.

4.14.1  Common-Cause Failure Analysis of Reliability Networks

In Fhi.s‘s:ctiaon Wwe present a newly developed method [88, 101] to analyze
active identical units with statistically independent and dependent (com-
mon-cause) failures. However, this method may be extended to other
reliability models and probability densities. To develop this method, it was
mu.}med that each unit has a certain amount of common-cause failures.
ISmr.u: from past experience [101] it is known that the common-cause
failures occur in real life, the parameter a is introduced into the newly
developed formulas to include common-cause failures [88]. The parameter
a can be obtained from the operating experience data of the redundant
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system or equipment
a=[raction of unit failures that are common cause

The above parameter can be considered a point estimate of the condi-
tional probability that a unit failure is common cause. A unit failure rate A
can be considered to have two mutually exclusive components, A, and A,,
that is,

A=A, +A, (4.124)

where A,=the unit independent mode constant failure rate.
A, =the redundant system or unit constant common-cause failure

rate
Since
=2 (4.125)
S Ay=ald (4.126)

and A, can be obtained from (4.124) by substituting (4.126)
Sk =(1—a)A (4.127)

The system reliability, hazard rate, and MTTF formulas as well as the
graphical plots are developed for a parallel, k-out-of-n, series, and a bridge
network as discussed in the following sections.

‘A Parallel Network. The modified identical units parallel network is
‘shown in Figure 4.24. It is simply a parallel network with a unit in series,
The parallel stage (i.e.. labeled “1") of Figure 4.24 represents all the
independent failures for any » unit system. The series unit stage labeled
“2" in Figure 4.24 represents all the common-cause failures of the system.
The common-cause failure probability hypothetical unit is connected in
series with the independent failure mode units. A failure of the hypothet-
‘ical series unit (i.e., the common-cause failure) will cause the system
failure. It is assumed that all the common-cause failures are completely
coupled. The system reliability R, of the Figure 4.24 can be written as

R,={1-(1-R,)" R, (4.128)

‘Where  n=the number of identical units
R, =the unit’s independent failure mode reliability
R, =the system common failure mode reliability
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Flgure 424 A modified identical units parallel network.
Figure 426 A three-parallel-units reliability plot.

For constant failure rates A, and A, from (4.126) and (4.127) and for
reliabilities R, and R;, the (4.128) can be rewritten as ate failure on the parallel system. As the value of a increases, the
reliability of the parallel system decreases.

- The parameter o takes values from zero to one. At a=0, the modified
parallel network simply acts as an ordinary parallel network; however, at
a=] the modified redundant parallel system just acts as a single unit.
‘What it means is that all the system failures are common-cause failures.

R (t)m{1—(lmgnCnie)h) gmals (4.129)

where ¢ is the time.
The reliability plots of (4.129) are shown for n=2.3.4. in Fi
, .4, 1gures 4.25,
4.26, and 4.27, respectively. These plots clearly show the effect of common-
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Figure 425 A two-parallel-units reliability plot, Figure 4.27 A four-parallel-units reliability plot.




The system hazard rate can be obtained from into (4.132), that i
to (4. y 15,
-1 dR()
— o ()
MTTF= 2 X=G-)A) ot

The modified parallel system hazard rate A (t) is derived by substituti
(4.129) into (4.130): > A
Example 11. Using the following known data for a, A, and r. Compute
the reliability of a two identical units parallel system:

A=0.001 failure /hour

a=0.071
1=200 hours

soLUTION, The reliability of the two identical units parallel system subject
to common-cause failures=(0.95769. The reliability of the two units parallel
system subject to independent failures only =0.96714.

a.,u:.-uunm-q}{ :_—_!I ] (4.131)

where

ey j
¥ | -'f_{l —a At

;m hazard rate plot is shown in Figure 4.28. The MTTF can be obtained
rom
k-out-of-n System. The modified identical units k-out-of-n system has a
hypothetical unit for the common-cause failure connected in series with
mdcpcndr.nt failure mode k-out-of-n units. The series-connected hypo-
thetical unit represents the system or unit common-cause failures. A failure
associated with this hypothetical unit will cause the overall system failure.
The modified k-out-of-n identical units system reliability, R,,, can be
obtained from

MTTF = L”R{:}m (4.132)

The modified parallel system MTTF is obtained by substituting (4.129)

0.1 =
0.0 — - & A=r
A -[ 2 (F)Ri(-R)) ]Rz (4.134)
0.08 - r=k
i a=06 i R, =the unit independent failure mode reliability
& 00 g R,=the k-out-of-n identical units system common-cause failure
E reliability
0.05 |- =
= a=03
S hugsd 1 For the constant failure rates A, and A, from (4.126) and (4.127), (4.134)
0.03 o €an be rewritten as
0.02 - i = -
0.01 |- ] Ra.{"]'rzk(:)ﬂ_'“_”""{l—e"'_""'}""e""’“ (4.135)
g l ] |
- : i * The graphical plots of (4.135) for 2-out-of-3 units, 2-out-of-4 units, and

'jj- ut-of-4 units are shown in Figures 4.29, 4,30, and 4.31, respectively. As
e value of « increases, the system reliability decreases for a small value of

Figure 428 A four-parallel-units hazard rate plot.
Al, as can be verified from Figures 4.29, 4.30, and 4.31.
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substituting (4.135) into (4.130) and (4.132), respectively, that is,

J"-h{f] i

2 [rgk{f)[m'—r— a)h] ﬂ[q"’""] +OA(n—r)(1—a)y'"—"- "1 —'r,l:l}

»(1) and MTTF can be obtained by

S (2)on

rm=k

(4.136)

Reliability R, (¢)
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Figure 430 A 2-out-of-4 units reliability plot.
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= { I _e—ll—ﬂ)’”]

E_‘[m—r—-}lr

- 1 (n—r) (n—r}n—r—1)
M‘I‘I‘F-rgk{r} r—rata (r—ra+1)A 2Nr—ra—a+2)A
_(n=n)n=r=1)(n=r-2) ! Bt
3! (r+3—ra—2a)A

(4.137)

Example 12. For the following given hypothetical values of A, ¢, and a
calculate the system reliability of a 2-out-of-3 units system:

A=0.0005 failure /hour
a=03
f =200 hours

From (4.135) the reliability of a system with common-cause failures was in
the order of 0.95772 as compared with the system reliability, 0.97455, with

no common cause failures.
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Parallel-Series Network. This system is composed of independent fail

3 - . & m
mu_de, identical units, and paths with a hypothetical common-cause failure
;u:ut. The modified parallel-series network reliability, R, can be obtained
rom

R, ={1-(1-R7)")R, (4.138)

where m=the number of identical units in a path
n=the number of identical paths

Reliability Kyl

For the constant failure rates A, and A, the above equation becomes

R, (1)=[1-(1 <l o (4.139)

The parallel-series network hazard rate A,(¢) and MTTF can be obtained
by substituting (4.139) into (4.130) and (4.132) as follows:

l,,(r}muh+mn{1_u}1{':T_T:_l_:] (4.140) Figure 432 A bridge network reliability plot.

where A=1/[1—¢ "1=7] apgd
A=(1—a)A. The reliability plots of (4.143) are shown in Figure 4.32

i ( i ){ — 1y for the varying values of parameter a. For the small value of A+, the bridge
jmi ¥ network reliability decreases as the value of parameter a increases.
MATE = (4.141) - The bridge network hazard rate, A,(r) and the MTTF can be obtained

y —
(Ra+nd(j-aj)) by substituting (4.143) into (4.130) and (4.132), respectively:
A Bridge Neiwork. This system is composed of an independent failure
mode identical units bridge network in series with a hypothetical common-
cause failure unit for the bridge structure. If the hypothetical common-cause
failure unit fails, the overall system fails. The modified bridge network
reliability [127] can be obtained from

A1) =PA+A(—87°+257*~2Un ' +47?+47)

— i Snt—20i-2g? (4.144)
1 -25%+57*— 297 — 272 }

w=(1—¢ ) and

Ry={1-201=R\\+5(1-R,)*~2(1-R,)’~2(1-R,}}}R, (4.142) 2 2 5 2
| Mm-(l—u}h+(3—zu]a+ @—3a)A « (5—4a)A (4.145)

where R, is the reliability of the bridge network subject to common-cause
failures,

For the constant failure rates A, and A, from (4.126) and (4.127), (4.142)
can be rewritten as

Xample 3. Suppose an identical units bridge network has the following
nown values for its parameter A and a. Calculate the bridge reliability for
00 hours, that is,

A=0.0005 failure /hour

a=10.3

=200 hours

Ry(t)=[1-2(1—e ) 4 5(1—e-41)* — 2(] — -1y’

_2{] _f.dr}ll]e—ﬂh (4'143;
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a=constant rate of repairmen availability and components replace-
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soLuTiON. The reliability of the bridge network subject to common-cause

failures was in order of 0.96 [from (4.143)] as compared to the independent ments X
failure mode bridge reliability of 0.984 (i.e., for a=0). p=constant common-cause failure rate
I=time

4.14.2 A Common Cause Failure Availability Model

To perform meaningful reliability analysis of a two nonidentical units
system with common-cause failures, we present a model taken from
reference 92. The following were assumed to develop this mathematical
model:

\Mathematical Model. The system of first-order differential equations [129]
associated with Figure 4.33 are

2 3
Fo(t)= *( 2 1.+ﬂ)f’n{f]+ 2 P+ Pyl (4.146)

im ] =1

1. Common-cause and other failures are statistically independent.

2. Common-cause failures can only occur with more than one unit. Pi(1)=—(Ay+p )Py (1) + Py(1)pa+ Fol A, (4.147)
3. If either one of the active redundant units fails, the unit is repaired. In

addition, when both units fail, the system s repaired.
4, The common-cause unit failure and repair rates are constant, Pi(1)= =N+ ) Py(1) + PR+ Py(0)p, (1)

When both units are failed, repair is dependent on the following three

2
- Pi(1)= _( % m+a)r,m+ S B(OAg_y+ BB (4.149)

i=1 =1

Case 1. The failed component replacements, repair facilities, and skilled
craftsmen are available to repair both units.

Case 2. The failed component replacements, repair facilities, and skilled
craftsmen are available to repair one unit only.

Case 3. Neither (2) or (3) is applicable due to nonavailability of the failed
components replacements, tools, or skilled craftsmen. Further-
more, it may be queuing at a repair facility.

Pi(t)=—psPylr)+ Py(t)a (4.150)

P,(0)=1 other initial condition probabilities are equal to zero, where
prime represents differentiation with respect to time /.

Py

In Case | both units can be repaired simultaneously; however, in Case 2
only one unil can be repaired at a time. For the last and final case (3) the
units can only be repaired at the availability of the crafismen replacements
for failed components.

The following notations and abbreviations were used to formulate this
availability model:

Fy(r)=probability at time ¢, both units are operational
Py(t)=probability at time ¢, the unit 1 has failed and unit 2 is operational
Py(1)=probability at time r, the unit 2 has failed and unit 1 is operational
Py(1)=probability at time ¢, the units | and 2 have failed
Fy(t)=probability at time ¢, the failed component replacements and re-
pairmen are available to repair both units
A, =constant failure rate of units 1 and 2, respectively, for i=1,2
jt;=constant repair rate of units | and 2, respectively, for i=1,2
jt3=constant repair rate of units 1 and 2

Figure 433 A common-cause failure availability maosdel.
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The following steady-state equations obtained from (4.146)-(4.150) by

setting the derivatives with respect to time 1 equal to zero:

(E-"ﬁ +ﬁ)P + E bt Pypy=0

= =i
—(A2+1y) P+ Pypy+ oA =0
=(Ay+pa) Pyt Body+ Py, =0

3 2

21“:""")?3"' EP:J"(}—-H"'PHJH‘“{I

=] i=1

4
S B-1=0
=

Solving the above system of simultaneous equations yields

Pun[ﬂ{i+ +"”‘1+"1}'}

Hapsy
s e I, _HJ“

my(Ay+py) Ayt
Fz{""1+"1+#z} ¥

(Ay+pgdpy By

e riss
A tpg [ o
where

ity
£y

{P.fr,}-["‘"‘f;“"' () (e )+;-L,+.x,+ﬁ]

" [ pylAy+py) +a(Ay+py) ( polAg+py) ) }

M2 Avtp,
Py=0F,
P Ay ol A pilAs+p, )Py
Aty pa(A +p;y) Ha( Ay +p)
Po= (Az+p,) P 2 MPF
3
(¥ K3
aP(A;+ ok
P= 1(Az+py) gt B
Halty Bapsy

steady-state system availability can be obtained from

2

system availability= > P,
i=0

(4.163)
(4.151)

(4.152)
(4.153)

4.14.3 A 1-Owt-Of-N: G System With Duplex Elements

model incorporates stand-by duplex unit replacements and common-
cause failures [91]. When the operational duplex system (contains two
statistically identical units) fails, it is replaced by one of the (N—1)
tandby duplex systems. Furthermore, this model incorporates a possibility
{i.e., to replace the failed system) that the repairmen or special repair tools
may be available or, alternatively, not available at the time of the opera-
tional system failure. This type of situation occurs at a nuclear plant where
a duplex system is replaced only when both units fail.

~ The following were assumed to develop this model:

(4.154)
(4.155)

(4.156)

1. A duplex system has two statistically identical units. All but one of the
- duplex systems are cold standbys (units cannot fail).

2. Common-cause and other failures are statistically independent.

3. Operational system is replaced only when both units fail.

4. Operational units are independently identically distributed (i.i.d.), ex-
cept for common-cause failures.

5. A failed system is restored as good as new.

6. Cold standby systems; standby units cannot fail.

7. Failed duplex systems are never repaired.

8. When a system fails, two different possibilities are considered to replace

it with one of the standbys: (a) r:pmmlen and special repair tools are
available; (b) repairmen and special repair tools are not available.

(4.157)

The notation for Figure 4.34 is as follows:

n=1otal number of sysiem stales

i=state of the system: both units are good, i=0,4,8,....,(n—2); one
unit is good, one unit is bad, i=1,5,9,...,(n—1); both units are
bad, no waiting, i=2,6,10,..., n; repairmen or special repair tool
waiting state, i=3,7,11,....(n—3)

A= constant failure (hazard) rate of a single unit

f=constant common-cause failure (hazard) rate of the duplex system

a=constant repairmen or special repair tool availability (hazard) rate

it;=constant and replacement (hazard) rate of the failed duplex system
when repairmen and special repair tools are available (for j=1); or
not available (for j=12)
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Figure 434 Transition diangram of system. The star denotes down states,

The equations for the Figure 4.34 model [129] are:
Pa(t)=—(2A+B)Fy(1)
Po(t)=P,_(1)2A=P. (1)

Pios(t) =P (1)B+AP,_y(1)=(p+a)Py_4(1)
Pia(0) =P _s(1)a—py Py_y(1)
Pea(n)=Py_s(O)py+p2 P _5(1)—(2A+B) P, (1)

Pi(1)=P(t)A+P,_,(1)B
The above equations are valid for k=59,13,...,(n—1).
P(r)=1
=0  forall other {

for i=0

The prime denotes differentiation with respect to time ¢.
n=(4N-2) for N»2
The Laplace transforms of the end result are

1
s+2A+f

Pyp_y(5)2A
s+ A

Py(s)=

Pi(s)=

P._.(5)a
rkﬂmxm-%

on Cause Failures ro9

Py_s(s)= F*"[:f;i":(’n (4.174)

P*_ |{5}-‘ Pﬂ-i‘:*’:il;'ikﬁl{"}#! {4]?5}

e P.(s)= Ps)A+P,_(s)B (4.176)

L

To obtain the time domain solution, one should transform (4.171)-
{4.176) for the known value of N.

4144 A 4-Unit Redundant System with Common-Cause Failures

This mathematical model represents a 4-identical-unit system with com-
mon-cause failures [87] where system repair times are arbitrarily distrib-
ated. Therefore, the supplementary variable technique [123, 125, 126] is
used to develop equations for the model.

The following were assumed to develop this mathematical model:
(41658 1. Common-cause and other failures are statistically-independent.
2. Common-cause failures can only occur with more than one unit.

3. Units are repaired only when the system fails. A failed system is
restored to like-new.
4, System repair times are arbitrarily distributed.

The transition diagram is shown in Figure 4.35.

py ¥l

(4.170)

(4.171)

(4.172)

Hace Ly}

4, e

Figure 435 Transition diagram of system.

(4.173)
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The following notation was used to develop model equations - The Laplace transforms of the solution are
i=state of the unfailed system: number of failed units, B, Gy(s) |
i=0,1,2,3 Po(s)=| s+Ag+ By~ (ﬂn+ e )64 eels) = —— ] (4.183)
Jj=state of the failed system, j=4 means failure not due to 3
common cause; f=4, cc means failure due to a common- = ;
Y ““ G)=["exp(~9)g)(N)d  for j=4 or dicc
F;(t)=probability that system is in unfailed state i, at time ¢
p,(, 1)=probability density (with respect to repair time) that the _5+A+5,
failed system is in state j and has an elapsed repair time S
of y
p(»), q;(y)=repair rate (a hazard rate) and pdf of repair time when 7 _____*"l["+?'*:+31:|
system is in state j and has an elapsed repair time of y g Ay
B,=constant common-cause failure rate of the system when in
state i; f,=0 e Ay(s+A;)
A, =constant failure rate of a unit, for other than common- .
cause failures, when the system is in state i; i=0,1,2,3
= Lapl transf variabl
P i P)= T8 for =123 (4.184)
The equations for the model are
A P(s) 1 —Gyls
.Pu{-l'} Py(s)= LEL )[ s )] (4.185)
+(Ag+ By ) Fyl1) 3
o - 2 I_Gl cc(‘r}
-_I; P4(.hf}p4{y}nj=+j; Pace ¥y Ot oo ) ¥ Py cels)= E‘,ﬂﬂ,ﬂ{si G (4.186)

(@.177)

LUD L (A ABIP() A, B_y(1) =0

To obtain time domain solution of the above equations, one should
substitute the Laplace transform of the repair times density functions for
Gy(s) and G, (s) and then take inverse Laplace transforms of (4.183)-

i=1,2,3  B,=0 (4.178)
ap(y.t)  dp(y.1)
ot oyt )y, =0
j=4 or dcc  (4.179) This section presents a bibliography on fault trees and common-cause
a0, 8) =X, Pi(1) 4.180) _;:=1'- es as well as some miscellaneous references related to the subject of
S i 1 (4. interest. It is expected that this selected bibliography, in this important and
Pacel0, 1) =Fy(t)Bo+Py(1)B,+ Py(1)B, (4.181) ast developing area, will be of considerable interest to the readers.
P(0)=1 for i=0 otherwise P,(0)=0 ault Trees
piy.0)=0 forall j (4.182) L. Barlow, R. E. and F, Proschan, Statistical Theory of Reliability and Life Testing—

Probability Models, Holt, Rinehart and Winston, New York, 1975.
Barlow, R. E., J. B. Fussell, and N, D. Singpurwalla, Reliability and Fault Tree Analysis.

Solving and setting up, similar to the above equations are presented in SIAM, Philadelphia, 1975,

reference 125,
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