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Software Reliability

51 INTRODUCTION

Computers are finding an ever-increasing number of applications. The
expenditure on computer software is increasing faster than on associated
hardware. One of the estimates indicates [1] that the annual expenditure of
the U.S. Air Force, for example, on computer hardware is $400 million and
the corresponding expenditure for software is estimated at $1500 million
per year. This ratio of four to one is predicted to rise to nine to one [5, 23],
With expenditures of this magnitude, it is natural that attention should be
directed to the proper development of software for computer applications.
One area on which considerable emphasis has been placed in recent years
is software reliability. This has come primarily with the advent of large and
complex hardware-software systems and the use of computers as the heart
of real-time applications to control vital and critical functions. The unde-
tected errors can cause system failures with catastrophic results and at the
same time the size and complexity has increased making the process of
debugging more difficult. Most of the work in the area of software
reliability can be divided into the following three categories:

1. Writing correct programs to begin with.
2. Testing the programs to take out the bugs.

3. Modeling of software in an attempt to predict its reliability and possibly
study the impact of related parameters.

These three areas are discussed in this chapter. It should be pointed out
that software reliability is in no way as highly developed as the discipline
of hardware reliability. Several useful concepts have, however, emerged,
and considerable work is still under progress.

5.2 HARDWARE AND SOFTWARE

The discipline of hardware reliability is considerably older than that of
software. It is, therefore, natural to make a comparison between the two in
an effort to apply the large body of knowledge of reliability engineering to
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software assurance. Several attempts [8, 13] have been made in this direc-
tion. It appears that much can be learned from established reliability
mym:nng in organization and control procedures but that there are
ificant differences when it comes lo failure mechanisms. A hardware
component is assumed to have failed if its charactenstics change beyond
the design values either by drift or catastrophic failures. A piece of
software, however, does not fail. If a program does not do what it is
supposed to do, it is because an error is present. The error has been there
and when the segment of the program containing the error is energized, the
error becomes manifest. This encountering of error may or may not cause
a system to fail. Whereas the hardware undergoes a change at the instant
of failure, the software is really the same as it was before the error was
discovered.

The hardware reliability of a system can be improved by using two
jdentical components in a redundant manner. Two identical softwares,
however, will be of little use in increasing the reliability since the same
error will be exercised in both at the same time,

There is an important difference between hardware and software in
regard to the relationship between testing and reliability. If the software
could be tested for every conceivable input, then theoretically it should
never cause system failure. The hardware, on the other hand, could fail
even after having been tested in the most exhaustive manner.,

A question that may be asked is, “Can the failure behavior of software
be regarded as random?” A program basically maps the elements of input
space into corresponding elements of output space [11]. A certain subset of
the input space would produce incorrect output. If we knew the output
behavior for every conceivable input and could predict the future inputs,
then we could predict the failures in a deterministic fashion. The properties
of a large piece of software, however, may never be known completely,
since it is almost impossible to test software for every conceivable input.
The input to the software is also random. With the uncertainty associated
with both the input and the software, randomness can be justified for the
occurrences of errors.

53 SOFTWARE RELIABILITY MODELS

Reliability models can be used to predict the reliability when the software
is pul into operational use. Several models have been proposed [21] in the
literature, and a few are described here. The software reliability models use

the information of the number of errors debugged during the development

Of a software program. This information is used to characterize the mﬂdel
‘parameters that can then be used to predict the number of failures or : some A
other measure of reliability in_ the future. The software reliability can be

defined as the pmbabﬂ:ty of a given software operating for a specified time—
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period, without a software error, when used withi N
appropriate machine, thin the design limits on the

5.3.1 Shooman Model

The model proposed Shooman [17 i .
assumptions: o [17,18) 2 based o the hm}m

l. The total number of machine lan i i i
. guage Instructions
Program 15 constant. = e el
2. The numhef of errors at the start of integration testing is constant and
d:cfeam directly as errors are corrected. No new errors are introduced
during the process of testing.
3. The difference between the errors initiall
y present and the cumulati
errors corrected represents the residual errors, i

4. The failure rate is proportional to the number of residual errors,
Based on these assumptions [17]),

elx)=e(0)—e(x) (5.1)

where x=debugging time since the start of system integration
e{D}-em present at x=0, normalized by the total number of
machine language instructions
=E, /I
Ey=number of initial errors
i .; = (otal u}laumber of machine language instructions
\¥)=cumulative number of errors corrected i
ot by x, normalized
€,(x)=residual errors at x, normalized by I

Assuming failure rate to be proportional to residual errors (assumption

4),
A(t)=K.e(x) (5.2)
where f=operating time of the system
K, =constant of proportionality

A,(t)="failure rate at time

Knowing the failure rate f 5 - by
survivor function [20] is rom (5.2), the expression for reliability or

R{ri=exp[— j; 'h,{x}aix]

-exp[ —L‘K,e,{x) dx] (5.3)
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Since the hazard rate is assumed independent of ¢ in this model, this
assumption amounts to a constant failure rate, and therefore,
1

MTTF= ——
Alr)

T Ke(x) il

~ Estimation of Model Parameters. By substituting for e (x) from (5.1) into

{5.4), the expression for MTTF can be writlen as follows:
1

T K[eO)—elx)]
1

" K[E/I=e(x)]

There are two unknowns in (5.5), K, and E,. These parameters can be
estimated using the moment matching method [20]. Considering two de-
bugging periods x,; and x; such that x, <x,,

MTTF

(5.5)

T, 1
n o K, e(0)—ex,)] ¢

and

5 : (5.7)

ny K,[e(0)—e(x3)]

where T, T,=system operating times corresponding to x, and x,, respec-
tively
ny, ny=number of software errors during x, and x,, respectively

From (5.6) and (5.7)
En= I[w:[xt}_lf:[xi}] [53]
=

MTTF,
MTTF,

MTTF,=the mean time to software failures corresponding to de-
bugging time x,.
T,

i
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By substituting for £, from (5.8) into (5.6),

ny

T [ Eo/I-e(x))]

_ An alternative method for estimation of E, and K is by using maximum
likelihood estimates and is discussed in reference 17.

L

(5.9)

5.3.2 The Markov Model

This model [19, 22] assumes the system to go through a sequence of “up”
and “down” states, The system state is termed “up” if the first error since
the start of integration and testing has not yet occurred or if the system hag
been restored after an error and the next error has yel to be encountered,
The down state implies that an error has occurred and has not been
corrected. The state transition diagram of this model is shown in Figure
3.1, in which the following notation is used:

I. State (n—k) indicates that & th bug has been corrected and that (k+ I)th

error is yet to occur. This is the up state following the down state due to
the kth bug.

2. State (m—k) is entered when the (k+ 1)th bug is discovered. This is the
down state due to (k+ 1)th error.

3. Ay is the error occurrence rate when the system is in state (n— k).
- g is the error correction rate when the system is in down state (m—k).
5. P(1) is the probability of the system being in state j at time 1.

F Y

jI‘he state differential equations for this system can be easily formulated
using known methods [20].

P»—k“}“_""kﬂ-ﬂf}"‘#hrf}m—nj{f} (5.10)

B ()= =, P (1) A P,_ (1) (5.11)

The initial conditions are

P, {0)=0 k=1,2,3.., (5.12)
Up states
» aa w=k w—k =1
Ao =] )
Hy
R S [ mo-k+1 m - &

Flgure 5.1 The Markov model,
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and
Pl0y=1 (5.13)

A restrictive solution of (5.10) and (5.11) assuming constant A, =X and
constant g, =p is derived in [22]. This constraint on A, and p, is, however,
easily seen to be unrealistic. A more general solution can be obtained using
numerical techniques like Euler's and Runge-Kutta methods for integra-
tion. Once the state probabilities have been obtained, unavailability is
calculated as [19,22]

kmax

Ult)= 2, F, (1) (5.14)
k=0

The probabilities will depend on the choice of k_,. . By choosing k.
large enough, U{1) can be made close to the true value of U(r).

5.3.3 Jelinski-Moranda Model

This model [14,15,21] like the Shooman model assumes an exponential
probability density function for software errors. The hazard rate is as-
sumed to be proportional to the number of remaining errors, that is,

}‘JM[-".]=KJH[E0_{"—”] (5.15)

where K, = constant of proportionality
x;=time between the ith and (i— 1)st errors discovered

The reliability function and the mean time to failure can be obtained
[14] from (5.15):

R(t))=exp[ — K, ( E;—i+1)t,] (5.16)
and

-]
——————enp| — K (Ey—i+1l),
Kyu(Eq—i+1) pl — Kl E, ] s

(= ]
MTTF=f R(t,)dt,=
o

1

T ] By—1¥1] s

5.3.4 Schick Wolverton Model

The Schick Wolverton model [24] assumes the hazard rate proportional to
the number of remaining errors and the debugging time:

A =K,[ E,—(i—1)]x, (5.18)

where x,=time interval between the (i—1)st and the ith error.
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The reliability function is
R{.‘r}-exp[fhl”{x]cix]
a
=exp ; ) (5.19)
k-]
MTrF=-f R(1,)dt
a
- -]
-fu exp| — K, (E,—i+1)12/2] i,
= 2 kF 5.20
2K, (E,—i+1) by

It could possibly be argued both for and against having the hazard rate
proportional to debugging time. Probably the only way to judge the
suitability of this model is by fitting it to the experimental data.

54 MODEL VALIDATION

Four models have been described in this chapter and several more have
been proposed in the literature [21]. In addition to the models described in
reference 21, Bayesian models have also been proposed [10]. The true
worth of a model can be measured by its ability to predict. Most of the
discussion on the relative worth of the models is generally based on
intuition and logical consistency. Because of the scarcity of data on
software errors and lack of consistency in the available data, only a few
attempts have been made for the experimental validation of these models.
One such attempt has been reported in the literature [21], wherein a
comparative study of the four models described in this chapter and five
more models is described.

The error data used by Sukert [21] came from Software Problem Reports
(SPR’s) during the software development of a large command and control
system. The software was written in Jovial J4 code and consisted of 249
routines with a total of 115,000 lines. Although some internal tools such as
static code analyzer were used by the contractor for software development,
no techniques like structured programming were used.

The data was restructured so that each entry corresponded to a single
error and to delete entries due to nonsoftware errors. The data was then
sorted according to the date of opening an SPR so as to provide a
sequential time frame suitable for input to the models. The data on CPU
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time was not available from this project. A day was considered as the basic
unit of debugging interval length.

Because of the unavailability of CPU data, the Shooman model could
not be used. The other three models along with some modifications of
these and several other models were compared and the following conclu-
sions were drawn [21].

1. The Jelinski-Moranda and Schick-Wolverton models consistently gave
higher predictions for the number of remaining errors than the actual
number, that is, the prediction is conservative or pessimistic with these
models.

2. For small software projects or where the testing phase is short, Jelinski-
Moranda and Schick-Wolverton models appear to give a reasonable
prediction for the number of remaining errors.

3. Of all the models studied, Schick-Wolverton, or a modified version of
Jelinski-Moranda models appear to give the best prediction for the
remaining errors for large projects or projects with a long-testing phase.

It should be remembered that even though this comparative study has
produced some useful results, many more studies of this kind are needed.

55 SOFTWARE RELIABILITY ASSURANCE AND
IMPROYEMENT

Modeling iz only one aspect of software reliability and is intended to
predict the number of bugs remaining in the system by using the statistical
information on discovering and removing the errors. There are, however,
two equally and perhaps more important areas of software reliability.
These additional areas can be described as (a) designing for reliability, and
(b) testing for reliability assurance. These two topics are discussed in this
section,

5.5.1 Designing for Reliability
Probably the best way to have reliable software is to minimize the number

and severity of bugs while a software package is being developed. There
does not appear to be any proven best way of producing reliable software.
ere_is as-yet-no-theoretical framework for techniques for turning out

error-free software. However, there appears to be an emerging consensus
that “certain program structuring and management techniques are con-
ducive to developing reliable software, These techniques are usually re-
ferred to as structured programing and several techniques related to it.

Y
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Structured Programing. Several definitions of structured programing are
floating around. A more generally accepted definition of this approach
appears to be coding that avoids use of GO TO statements and program
design that is TOP DOWN and modular. These three features appear to
enhance program reliability, readability, and maintainability.

Top Down Programing. There are basically two ways of program design,
bottom up and top down. The classical way of writing large programs is

bottom up. In this approach, the program manager views the project as a
nﬁm@mwm specifies the components -

needed for the software. The interfaces aﬁ‘?ﬁ“ﬁﬁ@ “the component
softwares are allocated to indivi for development. Each
prﬂmmm‘ﬁﬂwmaulﬁ before it
goes into integration. The modules are integrated level by level by the most
capable member of the group whose modules are being integrated. This

manner of software development is similar to the one used for hardware
development.

It appears, however, that an alternative approach of | software develop-
m'MWWbE software [2]. Here the
chief programer programs instead of providing supervision alone. The core

of the system is written first assuming dummy subassembly at the next
level. These subassemblies are developed next in_likewise manner. In

comparing these two approaches, an analogy with the chiel surgeon is

often drawn. The top down approach is like the best surgeon doing the

most important or fundamental surgery himself and coordinating the less

essential work performed hy others [7]. ——

GO TO Free Coding. Dijkstra published a note in 1968 in CACM [6]
entitled *Go To statement considered harmful.” The title of this communi-
cation seems to have had a wide-ranging effect on contemporary program-
ing techniques. The GO TO statement does not create errors by itself. It is
the transfer of control that can create meshing of the flow of logic so that
the code can become difficult to read. The avoidance of GO TO state-
ments, on the other hand, creates more transparent and readable code. The
GO TO free programs are also more straightforward to prove.

Now if it were conceded that GO TO statements should not be allowed
in programing, what is the alternative? It has been shown [4] that any flow
chart can be constructed using only the single entry exit structures shown
in Figure 5.2. These three control structures can be used to write programs
that will be free of GO TO statements and in which the program text will
correspond more closely to the program execution [3). This is best il-
lustrated using an example. Figure 5.3 is an example of a program written
using GO TO statements and the same program written using the control
structures of Figure 5.2 is shown in Figure 5.4. It can be appreciated that
whereas the code in Figure 5.3 jumps around the page, the one in Figure
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W

Then

Ht> Do ‘
Else () @

k

Saquencing If then else Do while
Figure 52 Single-entry single-exit logic structures.
A
IFBE GOTOI10
D
GO TO 30
10 E
GO TO 30
a0 G Figure 5.3 Program containing GO TO stalements.
A
IFB THEN E
ELSE D
G Figure 5.4 Program of Figure 5.3 without GO TO statements.

5.4 follows a sequencing process. Imagine a large piece of software writtFu
in the manner of Figure 5.3; it could be hard to follow and readily

understand, whereas the code written in the manner of Figure 5.4 is more
transparent. Such a code is not only readily understood but the programer
15 less likely to make errors,

Modular Programs. Programers normally break down a complex software
development task into separate modules. A module is used by many other
modules. This also, however, increases the potential for misunderstanding
and errors. It appears that this source of errors can be minimized if every
module is entered only at the top and left at the bottom.

Related Ideas. The technigues of structured programing and the concepts
of modularity and top down flow have been described. These techniques
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have been found of much value in minimizing the number of errors in
writing programs [22]. There are other related ideas like development

accounting and the concept of a program librarian, which merit considera-
tion and the reader may find references 17 and 22-23 of interest.

5.5.2 Testing

Even with the best programing techniques, it is likely that a piece of
software will contain some bugs. The purpose of testing is to assure that
the program performs according to the specification design. Test tools have
been developed to assist in assessing this assurance in computer programs.
These tools basically provide some numerical measure of the thoroughness
with which the testing was conducted. Several such tools are available and
a comparative investigation into the effectiveness of these tools is reported
in reference 16.

The test tools consist of the following basic modules: (a) instrumentation
module, (b) analyzer module.

The source program of the module under test is first submitted to the
instrumentation module, which inserts additional statements into the mod-
ule. These additional statements are called sensors and counters [16] and
the process of adding these statements is called instrumentation. The
functional intent of the original code must remain unchanged during the
process of instrumentation, that is, the sensor and counter statements must
not change the functional objectives of the program.

The instrumented package is compiled in the usual manner and the
object package is executed with its test data, which results in an instrumen-
tation data file in addition to the normal output. This instrumentation data
file and the instrumented source file are then submitted to the analyzer
module, which produces a report indicating the behavior of the module
during execution, The following type of information is contained in such a
report:

1. The number of times each statement has been executed.

2. At each branch point, how many times a particular path has been
taken.

3. Time for executing each statement.

This information is useful in checking the structure of the code. It provides
confidence in the logic and code of the program by ensuring that each
statement and each branch path has been executed at least once. It is also
possible to ensure that each subroutine has been called once. As can be
inferred from the description of the testing process, these test tools can be
very useful in discovering and reducing sequencing and control errors
which account for approximately 20 percent of the total number of errors
[16]. These structural analysis tools, however, do not test the timing and
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data relationships. In addition to structural testing, functional testing is
also necessary if the software is time critical.
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