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Mechanical Reliability

6.1 INTRODUCTION

‘The concept of constant failure rate is used to evaluate electronic compo-
nent reliability, This concept is derived from the bathtub hazard rate belief
that the failure rate remains constant during the useful life of electronic
components. However, this is not normally the case when evaluating
mechanical component reliability. It is an established fact in many cases
that the mechanical components follow an increasing failure rate pattern
that is generally represented by the exponential hazard function.

The field of mechanical reliability is relatively new as compared to the
electronic reliability, The in-depth effort in this field appears to have been
started since the early 1960s and may be credited to the U.S. space
program. During those years, the failure of mechanical and electro-
mechanical components was one of NASA’s (National Aeronautics and
Space Administration) prime concerns. For example, due to a mechanical
failure caused by a busting high pressure tank, the SYNCOM I is believed
to have been lost in space in 1963, Another typical example is the failure of
Mariner IIT in 1964, It is also believed to have been lost due to a
mechanical failure. There are several other instances where systems had
mechanical failures. The researchers in the field felt that the design
improvements were needed to improve reliability and longevity of mechan-
ical and electromechanical components. Therefore, the space agency spent
millions of dollars to test, replace, and redesign components such as filters,
pressure switches, pressure gauges, mechanical valves, and actuators.

In 1965 NASA [80] initiated some major research projects entitled:

1. Reliability demonstration using overstress testing.

2. Reliability of structures and components subjected to random dynamic
loading.

3. Designing specified reliability levels into mechanical components with
time-dependent stress and strength distributions,

Ever since many publications on the subject have appeared. An up to date
but selective literature on the subject is listed at the end of this chapter. In
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addition, a comprehensive literature survey up to 1974 on structura]

reliability is presented in reference 3.

At present, the most acceptable way of predicting mechanical compao-
nent reliability may be by applying the interference theory. This approach
is well documented in references 49 and 50, The topics presented in this

chapter are as follows:

. Statistical distributions in mechanical reliability.
- Fundamentals of mechanical reliability.

. Mechanical equipment basic failure modes.

. Theory of mechanical failures.

. Safety indices.

Load factors.

Design by reliability methodology.

. Interference theory models.

. Reliability optimization.

e

6.2 STATISTICAL DISTRIBUTIONS IN MECHANICAL
RELIABILITY

This section presents failure distributions useful for representing the failure
behavior of mechanical components. As compared to other distributions
the extreme value distribution is the most likely candidate for the failure

behavior of mechanical components. Its examples are presented in refer-
ences 28 and 44,

The distributions discussed in the following sections are closely related
to the reliability evaluation of mechanical components:
6.2.1 The Exponential Distribution
The probability density function is represented by the equation:
f=Aexp(—=Atr) 30 A>0 (6.1)

where 7 is time and A is the constant failure rate.
The reliability function R and hazard rate z of the exponential distribu-
tion are:

R=exp(-Ar) (6.2)
and

z=A (6.3)
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This distribution is widely used in reliability engimﬁng. One _of.tlhe
asons for its widespread use is its simplicity in performing reliability

: ' alysis. Its validity to represent a real-life failure data was first presented
in reference 19.

6.2.2 The Extreme Value Distribution

‘The density function f of this distribution is defined by

f=exp(r)exp{ —exp(t)) - << (6.4)

where ¢ is time. The extreme value reliability and hazard rate functions,
respectively, are

R=cxp{ —exp(t)} (6.5)

z=expl(t) (6.6)

This distribution was first used to analyze flood data by Gumbel _[23].
Therefore, it is sometimes known as the Gumbel's distribution. The fmlm:e
behavior of many mechanical components may be rcprc.?ent_.ud P}r this
distribution. From more fundamental considerations, this distribution can
be developed by considering a corrosion process [66].

6.2.3 The Weibull Distribution
The Weibull density function is given by

f=BAtP-le™™"  for B>0 A>0 130 (6.7)

where A=the scale parameter
B =the shape parameter
[=time

Weibull reliability and hazard functions are

R=e~M* (6.8)

and
z=gxP! (6.9)

This distribution was developed by Weibull [99], who dl:sc.ri;had some of its
applications. Ball bearing failures applications are given in reference [64].
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The exponential (f=1) and Raleigh (8=2) are the special cases of this

distribution,

6.2.4 The Mixed Weibull Distribution

This distribution was first presented b ied i
is dis y Kao [43]. He applied it to measu
reliability of electron tubes, The probability density function is defined ar:

“lm) l-a)

+{lgzkjuz(%f)""'exp(_(ig)"_l} (6.10)

for ﬂ..ﬁiz:ﬁq.{r{a.{Laz;-l.a::-u,ﬂ{kcl
The reliability expression for the above density function is

oo - -of ol (2] e

6.2.5 The Gamma Distribution
The gamma probability density function is defined as

_ AP lexp(—A1)
L'(g)
where I"[,E}-fm = le—t
0

f=the shape parameter
A=the scale parameter

for A>0 >0 >0  (6.12)

The reliability and hazard rate expressions are
R= [f' X1 Exp[—hx}cix] M/T(8) (6.13)
and

1#-1exp( —Ar)
J: xP-texp(—Ax) dx

z= (6.14)

This disl:::ibution is an extended version of the exponential distribution. It
was applied to the life test problems by Gupta and Groll [26].
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The gamma distribution is related to the exponential and Chi-squared
ibutions. For its applications one should consult reference [57].

6.2.6 The Log-Normal Distribution

The probability density function is

PSS DERERN | (o) ) SR T
(1—-8)Vir o 0

for t=8>0

where p=is the mean

o=the standard deviation

The reliability and hazard rate expressions for the above function are

given by

ey *® 1 _  —(nt-0-0? 1252t
R m,-’: (1-0)° :
for >80 (610
and
[1/(t—=8)]e” =24’ /26? (6.17)

0 J’m[ ]‘}'(I—‘F}]I?‘_{h{;_ﬂ_“}zfz":dx

Normally, the hazard rate of this distribution is an increasing function
of time followed by a decreasing function. The hazard rate approaches
zero for initial and infinite times. A representative example of this distribu-
tion is the failures due to fatigue cracks.

6.2.7 The Fatigue Life Distribution Models

These distribution models were presented by Birnbaum and Saunders [9],
who proposed two-parameter distributions. The main apgiicaﬁms of a
'fﬂ:mil_'.r of distributions are to characterize failures due to fatigue,

The probability density function is defined as

CEL ) [_L 5+L1]
f zmulhllfff}\}ln—(hff}lflexp Zﬂz(h N )
for >0 a,A>0
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'whe[:etn qnd A are the shape and scale parameters, respectively. Readerg
requiring in depth material on these distributions should consult references
27, 44, and 91. Other hazard rate models are presented in references [67

*

91].

6.3 FUNDAMENTALS OF MECHANICAL RELIABILITY

Like any other field of reliability engineering, mechanical reliability is alsg
a joint responsibility of design and reliability engineers. A reliability
engineer augments the designer’s knowledge with design review procedures
and statistical analysis; however, the designer still remains the key person

to ensure component or system reliability.

The old concept of merely good design practices is not satisfactory to

ensure reliability of a complex system. Reference 72 lists several reasons
for the discipline of mechanical reliability.

1. Lack of _dzsign experience. Changes in technology are quite rapid and the
IIIMII?DJCHJ designers no longer have the time to master the design
especially when a complex equipment is designed for use in aerospace
or military applications,

2. Cost and time constraints. Because of the cost and time involved, the

designer cannot learn from past mistakes. In other words the cut-and-try
approach cannot be used.

3. Optimization of resources. The workable design is no longer considered
sufficient. The design must be optimized subject to constraints such as
reliability, cost, weight, performance, and size.

4, :Ttn‘ngem requirements and severe environments. Because of large-scale
investments in developing systems to be used under severe environ-
ments (military and space) the reliability problem becomes important.

3. Influence from electronic reliability. The vastly improved techniques for
predicting electronic component reliability also stimulated similar devel-
opments in mechanical engineering,

64 MECHANICAL EQUIPMENT BASIC FAILURE MODES

Unlike electronic components, the mechanical components have numerous
failure modes. Some of the basic failure modes pertaining to mechanical
eguipmenl are fatigue, leakage, wear, thermal shock, creep, impact, corro-
sion, erosion, lubrication failure, elastic deformation, surface fatigue, radi-
ation damage, spalling, corrosion wear, delamination, and buckling. These
basic failure modes are described in detail in reference 72. Some of these
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ilure modes may be associated with the following:

|, Leakage and distorted flow failure modes are associated with the fluid

~ flow equipment.

fracture, and excessive deflection.

The overheating and reduction of efficiency may be categorized as the
thermodynamic system failure modes,

Bearing seizure and reduced accuracy of relative movement pertain to
the kinemetic systems.

5, Incorrect material properties and incorrect component geometry are

called the material conversion failure modes.

65 THEORY OF FAILURES \/

‘When the strength of a material, a component, or a device is less than the
stress imposed on it, the failure occurs. Stress and strength are defined as
follows:

.'-Slrzss. A stress (load) tends to produce a failure of a component, a
‘device, or a material. The term “load™ may be defined as mechanical load,
environment, temperature, electrical current and so on.

‘Strength, Strength is defined as the ability of a component, a device, or a
material to accomplish its required mission satisfactorily without a failure
when subject to the external loading and environment.

Both stress and strength may be described by probability distributions.
All types of stresses and strengths cannot, however, be represented by the
existing distributions.

Because of the variation in material properties (e.g., production processes,
geometric dimensions) the strength of nominally identical components
subject to the same conditions may vary from component o component.
The variability may be described by a distribution function. All the
important variabilities (and their distributions) of a component must be
considered and known (or assumed) when estimating the expected strength
distribution function of a component. The methods to predict the expected
strength distribution from the variability distributions are presented in
references 72, 11, 15, 96, 59, 100, and 76.

It is always desirable to have a narrow spread of the strength distribu-
tions because a narrow distribution yields a higher reliability than its
counterpart, which is widely spread out and is of the same mean value.
Therefore, efforts should always be directed toward obtaining a narrow
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Figure 6.1 Interference theary of stress-strength distribution concept.

strength distribution; however, there should always be some degree of
limitation to obtain such narrowness because the strength of a mechanical
component or a material is generally reduced by fatigue, corrosion, wear,
which are factors that increase the spread of the strength distribution. One
should note that these factors take time to become effective. Therefore, it
must be understood that the strength distribution is a function of time.
Similarly, the stress distribution also changes under different conditions
like use, maintenance, environment, and so on. The duty or the stress
distribution for a component under controlled laboratory environments or
conditions remains constant,

If the expected distributions of stress and strength can be estimated for a
mechanical part, then by employing interference theory, the probability of
failure of a mechanical part can be obtained. This concepl is presented in
detail in references 45 and 48— 56.

The concept of interference is illustrated in Figure 6.1. The unreliability
or the probability of failure is represented by the shaded area in Figure 6.1.

The interference theory is applicable only to those cases in which no
significant changes occur in the item over the specified time interval.
Furthermore, it is assumed that the failure is dependent on the instanta-
neous stress and not on the history of the stress.

As mentioned earlier, the stress and strength distributions may change
with time. To illustrate this point Figure 6.2a, b display stress-strength
distributions for two different times ¢, and t,. For the sake of simplicity
the stress distribution is assumed to be constant but the strength distribu-
tion varies with time. Furthermore, the stress-strength distributions need
not be symmetrical and may be skewed or irregular. Once the stress-strength
probability density functions are known, reliability can be computed by
applying the interference theory.
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6.6 SAFETY INDICES

The safety factor approach is a conventional design technique. _ This
method uses safety margins and safety factors tl'u?.l are simpl?' arhu.ra:y
multipliers. In some cases, these factors provide satisfactory design, if they
are established from the past experience. In the days of modern lBﬂhI‘!O'-
ogy, however, the new design involves new applications anal:l new materials
and more consistent methods are needed. The mechanical component
design based entirely upon safety factors, could be nﬁslud_ing. ;and may be
costly due to overdesign or could end up in a catastrophic failure due to
underdesign. It is emphasized that whenever a designer makes use of §afet;.r
factors these must be based upon considerable experience on similar items.

6.6.1 Safety Factor

There are several different ways of defining a safety factor as outlined if:t
reference 55. In reference 10, the theoretical definition of a safety factor, is



140 Mechanical Reliabiliny

defined as

£ed average value of fai]rure gnv:mi:.lg strength, p,
average value of failure governing stress, u_,

=5 (6.19)

g 2.4

This is a good measure particularly when both the strength and stress
distributions are normally distributed. This factor in a mechanical design iz
fl]ways equal to or greater than unity. The concept of safety factor is
illustrated in Figure 6.3. When the variation of stress and/or of strength
f's large, the safety factor becomes meaningless because the failure rate
15 positive.

6.6.2 Safety Margin
In reference 55 the safety margin is defined in the following ways:

=51 (6.20)
or
B,—p
B % (6.21)
nd'
= Strength
‘g distribution
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Figure 63 Safety factor for stress-strength distribution.

where p, =average strength

Facrors

B x = Maximum stress
o, =standard deviation of strength

Poax =, +ko,

where p, =mean stress
a,, =standard deviation of stress

Normally, the value of & is between 3 and 6. It can be observed from
discussion on safety margins that (a) it is a random wvariable just like its
counterpart, the safety factor, and (b) it presents the idea of separation of
stress and strength mean values.

Example I. Suppose

a,,=200 psi, k=4, 0,= 900 psi
p,=25000psi and p,, =12,000 psi

Find the safety margin for given data. By substituting the above informa-
tion in (6.21), we get

s 25,000—(12,000+ 4 x 200)
So 900

_ 25,000-12,800 _ 122

900 9

=13.6

6.7 LOAD FACTORS

In the last decade or so it has been realized that the loads as well as the
capacities of structures are not necessarily deterministic but are probabilis-
tic, because of the random vanation in magnitude and the random
occurrence of loads. In this section we discuss the determination of load
factors in the structural design. In references 78 and 85 this subject is
discussed in detail. In this section we mainly deal with the dead and live
loads. Earlier analysis on the topic were initiated by the authors of
references 78 and 85.
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6.7.1 Deterministic Resistance with Normally Distributed Loads
For the deterministic resistance the design load
ol gn » £y, may be formulated as
D=L +Lp {6.23)

where L =the dead load factor
L,=the live load factor
g =nominal mean dead load
py=nominal mean live load

S_uppose .ﬂm live and dead loads are normally distributed random
variables with mean values of y, and pu,, respectively. The design load
then also follows the normal Jaw. In the case of independent dead and live
loads, the design load, D, may be described by (6.24).

Dy=(py+p,)+eyoi+of (6.24)

where o, o, are the standard deviations of the dead and live load and ¢ is

the_rehabﬂit;a coefficient for the combined dead and live load. Also, the

design load in terms of component loads may be written as ,
Dy=my+m =(p,+c'a;)+(p,+c'a;) (6.25)

where ¢’ is the reliability coefficient for each load component, that is,

c
o= 1,*' 2 13
0, +a, o, +ay

m = magnitude of component dead load

m =magnitude of component live load

By m_anipulating (6.23), (6.24), (6.25), we obtain the following load factor
equations:

LoD
d ;:=sl+.5‘cVﬂ, (6.26)
m
Ly=—=1+scV
1 i 1 (6.27)
7 3y 1/2
whﬂrc j-{—“ﬂ_
o, +o)
Mg [
V=12 L
d o, ¥ o
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‘where ¥, is the coefficient of variation of dead load and ¥, is the
gcoefficient of variation of live load.

6.7.2 Normally Distributed Loads and Resistance

When the resistance follows a normal distribution, (6.26) and (6.27) are

modified to the following form:

| +.TC‘VJ

T (6.28)
1+scV,

T (6.29)

where ¥y is the resistance coefficient of variation. When Vy is equal to
zero, the resistance follows the deterministic law. The value of ¢ can be
determined from (6.30) when loads and resistance follow the normal
distribution:

]I,r:

o [[VRFR}2+”12+“:

i o (6.30)

VR#R+[U|3+E£

where i, is the mean resistance and ¢* is the reliability coefficient of the

system.

By substituting (6.30) into (6.28) and (6.29), we can determine the load
factors for any desired level of reliability. Therefore the value of the ¢* can
be obtained from the table of the error function. For example at the
desired level of reliability, say R=0.9901, ¢*=2.33. For a solved numerical
example see reference 86.

68 “DESIGN BY RELIABILITY” METHODOLOGY

The “design by reliability” methodology is described in considerable detail
in references 50 and 49. To design an equipment or a component by taking
reliability into consideration, the following steps are needed:

1. Define the design problem in question.

2. List and identify all the associated design variables and parameters in
the problem.

3. Perform failure modes, effect, and criticality analysis (FMECA).

4. Determine the failure governing stress and strength functions and
distributions of a failure mode.

5. Use failure governing stress and strength distribution to evaluate each
critical failure mode reliability.
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6. lterate the design until the assigned reliability goals are met.

7. Optimize design under specified constraints such as cost, weight,
volume, reliability, maintainability, safety performance, and so on.

8. Repeat the above steps for each vital component or device of a system,

9. Calculate the system reliability by applying the classical reliability
theory.

10. Iterate the design until the specified system reliability goal is fulfilled,

Step 4 is probed in depth in the following section:

6.8.1 Determination of Failure Goveming Stress Distribution

The following steps are to be followed to determine the failure governing
stress distribution:

1. List and identify all the important failure modes.

2. In the case of a fracture failure mode, if any, determine the most likely
locations where the combination of stresses are likely to act which may
result in component failure.

3. At each location calculate the nominal stress of components.

4. Evaluate maximum value of each component stress with the use of
necessary stress modifying factors.

5. At each location combine all the stresses into the failure governing
stress in accordance with particular failure mode being considered.

6. In the failure governing stress equation determine each nominal stress,
modifying factor and parameter distribution,

7. Determine a failure governing stress distribution from the step 6 distri-
butions.

8. Repeat steps 27 for each significant failure mode listed in step 1.

Readers who require more information should consult references 51 and
54,

6.8.2 Determination of the Failure Governing Strength Distribution

To determine failure governing strength distribution, the following steps
are outlined:

1. Set up the failure governing strength procedure by taking the failure
modes into consideration. This criterion should be based upon the one
used to determine failure governing stress.

2. Evaluate the nominal strength.
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3. Use appropriate strength factors 1o modify nominal strength. This 15 to

convert the nominal strength obtained under the standardized and
idealized test conditions. "
4. Determine the nominal strength distribution, of f_:auh modifying faal.‘mr
and parameter associated with the failure guve?'mnlg strenglh_ ‘.c:qluat1un‘
5. Establish the failure governing strength distribution by utilizing the
normal distributions of step 4.

iled i i i ination of the failure
more detailed information regarding the determina
& rning strength distribution, the interested reader should consult refer-

ences 49 and 50.

RELIABILITY DETERMINATION—CONSTANT
ﬁ-!"\S'I'IIE'ES-STItE.I'*:EIII}-']"l-I INTERFERENCE THEORY MODELS

This section deals with situations in which the stress and strength are
represented by well-defined probability density functions. Furthermore,

istributi i dent,
the stress-strength distributions are not time depen
When the probability density functions of both stress and strength are

known, the component reliability may be determined anarlylicall}r. Rc_liabil-
ity is defined as the probability that the failure governing slfcmhwﬂl not
exceed the failure governing strength. In a mathematical equation it can be

written as

R=P(5<S)=P(5>s) (6.31)
where R =the reliability of a component or a device
P =the probability
§=the strength
s=the stress

Equation (6.31) can be rewritten in the following form:

ili ' ion of the stress, 5
where f,(s)=the probability density function o
_il":_:(S]=thc probability density function of the strength §

Reliability for a single failure mode can also be computed from (6.33) on
the basis that the stress will be less than the strength:

R= f_n:nfs:h[ S }[ f_smf;r{j} ‘ﬁ] ds (6.33)
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The above equation may be used to obtain numerical solutions if the
analytical solution is difficult to obtain. In addition, when the empirical
data is sufficient but the stress or strength distribution cannot be identi.

fied, the graphical approach can be applied to obtain component reliabil.
ity. .

6.9.1 Reliability Calculation by Graphical Approach
This technique makes use of the Mellin transforms, which can be applied

to any distribution. The Mellin transforms of the reliability equation (6.32)

are defined as

M=J:m,,f5,,,[$]d5'
=1=Fifs) (6.34)
and
L= [ fs)ds=E,(s) (6.35)

Equation 6.35 may be rewritten as

dL=f (s)ds (6.36)

By substituting (6.36) and (6.34) into (6.32) we get

1
R= L ML (6.37)

. Obviously, L takes values from 0 to 1. Therefore, if we plot (6.37), that
1s, M versus L, the area under the curve will represent the single failure
qnde. component reliability. A typical plot of (6.37) is shown in Figure 6.4.
Simpson's rule can be used to calculate area under the M versus L curve.

Example 2. Suppose the strength of a component follows the Rayleigh
distribution with known scale parameter value of 15,000 psi. Similarly, the
stress follows a Weibull distribution with the shape parameter equal to 3
and the scale parameter value of 12,000 psi.

Therefore, the stress and strength density functions become

Jsn(8)= Tj%ﬁ[%{ﬁ)“p[ _[I_S:S'DT'ET] [G.SEj
and

f"("}'ﬁmﬁ( 123{:-:})1“"[ ~( iz,:m)}] (522
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L nent reliability, R,

By substituting (6.38) and (6.39) into (6.34) and (6.35), respectively, we get:

M= I_Fs:n(J:'““P[ (1555 )2] (6.40)
L=E_,{.r]-1—exp[~[ u}mr] (6.41)

Table 6.1 presents tabulation for M and L for the various values ﬂtj s
Figure 6.5 shows a plot of values for M and L from Table 6.1. Using

Table 6.1

: M E

0 1 0
2,000 0.98 0,005
4,000 0.93 0.04
6,000 0.85 0.12

8,000 0.75 0.26
10,000 0.64 0.44
12,000 0.53 0.63

14,000 0.42 0.8
16,000 0.32 0.91
18,000 0.24 0.97

20,000 0.17 0.99
22,000 0.12 0.997=1
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Figure 6.5 M versus L plot.

Simpson's rule, the component reliability R is estimated from Figure 6.5

0.25
R=—=={0o+4y, +2y,+4y3+y,)

R= 22 (144x0.75+2x0.61 +4x0.46+0.12)

R=0.5985

Reliability calculation when stress and strength data can not be repre-
sented by any existing distribution is discussed in reference 79,

6.9.2 Analytical: Constant Stress-Strength Interference Theory Models*

This section presents three interference theory models when probability
density functions are defined.

Component Reliability Determination for Exponential Stress and Strength
Distributions. Both stress and strength probability functions are defined
as

fu(s)=A, e 2st* 0O<s<oo (6.42)

and

Ssn(S)=Ag e "Sth® 0<S<w (6.43)

*For these models it is assumed that the component has only one significant failure mode.
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e A, =the reciprocal of the mean value of stress, 5 _
A ¢, = the reciprocal of the mean value of strength, 5

utilizing expression (6.33), the component reliability, R, can be de-

1 ermined:

R=| ”fs,,.m[ i Sf,,(s]df] ds (6.44)

[Chisyds= [N, e st ds=1—eMst® (6.45)
Li] o

Therefore by substituting (6.45) into (6.44) we get

Rc- J‘whsme-—hsm’[] _e-hr‘] ds
L]
o
— 1= [hgpeOuthaS s
o

Asin - =Ry +hsa)S
=1— St [N, +A e L )
I :"lsm"'-""tnjl-l e

Ay (6.46)

R =c—
. }‘:.-+""".?m

Dividing numerator and denominator of expression (6.46) by A,, we get:

1

= for §+#0
€ 1+Ag, /A

R

1
e e 6.47
1+p ¢ ‘

where p=35/5 for §>§, p<1. Values of R_are presented in Table 6.2 for
the various values of p. A plot of (6.47) is shown in Figure 6.6.

6.9.3 Component Reliability Determination when Stress and Strength
Follow Rapleigh Distribution
Both Rayleigh stress and strength density functions are defined as follows:

_};..{.I'}sz”m_ku" D=s<co {6143}

and

fon(S)=2kg,, Se *m5  0<S<eo (6.49)
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Table 6.2
/ 4 RTTHG
1 2 0.5
0.9 1.9 0.53
0.8 1.8 0.56
0.7 1.7 0.59
0.6 1.6 0.63
0.5 1.5 0.67
04 1.4 0.71
0.3 1.3 0.77
0.2 1.2 0.83
0.1 1.1 0.91
0 | 1

where k, =the stress parameter
k g, =the strength parameter

Component reliability is determined by substituting (6.48) and (6.49) into
(6.32):

R = J; lkﬂu_kﬂll[ ".: "c-‘i'rln'*i‘f"_"t-""""‘rl JS] ds

= _j; T2k, sk 2] e ko] ds =2 j'; 2k, se~urttenl® gy

Companent Reliability, &,

e =2 29 o 9o p 2 o
M W B B W @ @
S T o [N T S P |

| A | | | |

=]
I
|

l | 1 L1 1| | L 1
o 01 02 03 04 05 06 0.7 0B 08 1
-
Figure 6.6 Component reliability versus mean siress-strength ratio,
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Let

ﬂ‘(*,;“"ksu.]

o
-4;:,,]{; se™ ds

T(1/2) 2k, N7

SR =4k, Sa (6.50)
6.94 Component Reliability Calculation with Normally Distributed Stress
and Gamma Distributed Strength
Stress and strength probability density functions are defined as
1 3
f.(s)= e~ R 20 D<o (6.51)
r ﬂ:". 2”
and
e I PP 6.52
S 8) l"l:;?]hs e o0 (6.52)

where £ and A are the shape and scale parameters, respectively, and pu,,
and g,, are the mean and the standard deviation, respectively. By substitut-
ing the probability density functions (6.51) and (6.58) into (6.32) and
integrating, the following reliability expression is obtained,

f=fi—1 =4 ’
R=e 3 3 {-’*‘-"s:) = ’;‘m"u M XYZ (6.53)
#=0 =0 o1

where

x=[272(§) - ]
3

Z=[l—1(r, E;—l)]

where / is the incomplete gamma function.
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For the detailed derivation of (6.53) see reference 102. Many other inter-
ference theory models to calculate component reliability are developed in
references 45, 83, 101, and 102. These models are developed for the
following:

1. Normally distributed stress and strength.
2. Log-normally distributed stress and strength.

3. Exponentially (normally) distributed strength and normally (exponen-
tially) distributed stress.

. Gamma distributed stress and strength.

Weibull distributed strength and normally distributed stress.
Weibull distributed stress and strength.

Weibull distributed strength and extreme value distributed stress.
Maxwellian distributed stress and Weibull distributed strength.

e - T

6.9.5 Component Reliability with Multiple Failure Modes

Reliability of a component with many independent failure modes is given
by

R= H R, (6.54)

i=1

where R=the overall component reliability
n=the number of significant failure modes
R, =the reliability of a significant failure mode i

Similarly, the system reliability can be computed for a series configura-
tion, the component reliability being obtained by applying (6.54) or di-
rectly from the stress-strength models (i.e., if the component under study
has only one significant failure mode).

6.96 Chain Model

This model represents a situation in which a chain is composed of n
number of identical series links subject to the same environmental stress

[83]. The probability of any link having strength S, or greater is given by -

P(Sg,, > 55) = fs  fen(S)dS (6.55)

In the case of n number of identical and independent links, the probability
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that the chain has strength S, or greater is given by

P-:ss.ﬁsn)-[ ji ”fs,..tswsr (6.56)

To obtain the probability density function of the chain strength, f.c,(S),
differentiate expression (6.56) with respect to §:

oo n—1
Sesn(S) =”[fs fsm(s}d's] Jsen(S) (6.57)

When all the chain links are under the same environmental stress, the
chain reliability R, can be obtained by substituting (6.57) into (6.33):

Rc,-j:{ [LSL,{s}dr]n[_;;mfs,,,{.?}dS]ﬂ_l_[“,,l’_S}] ds (6.58)

Reliability of the above equation may be determined by graphical, analyti-
cal or numerical technique,

6.9.7 Stress-Strength Time-Dependent Models

In the previous sections, we considered stress-strength models where stress
and strength were independent of time. In real life, however, this may not
be necessarily true. The component strength may change with time and a
component may experience repeated application of stresses. In ot_her
words, the stress or load may follow a random pattern with respect to time
t. A hypothetical pattern is shown in Figure 6.7.

This area of mechanical reliability still remains to be explored further.
The interested readers are advised to consult references 10, 45, 84, and 87.

Stress or load

: VARV ;

Flgure 6.7 A hypothetical random stress spectrum.
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6.10 OPTIMIZATION OF MECHANICAL COMPONENT
RELIABILITY

A redundant system can be optimized subject to constraints such as cost,
weight, and volume. To optimize system reliability, traditional operations
research techniques such as Lagrange multiplier, linear, integer, and dy-
namic programming are applicable. These techniques can be used to
optimize reliability of mechanical components, also.

6.10.1 Reliability Optimization of a Mechanical Component with
Normally Distributed Stress and Strength

The following reliability equation is taken from reference 45:

. | 1
R= e gy (6.59
f—" V2o )
where n=(S§—5Xeod,+02)" /2

S=mean stress
S=mean strength
5.4 0, =standard deviations of strength and stress

It is assumed that to formulate this model, the stress and strength are
statistically independent. To maximize component reliability, it is obvious
that the value of lower limit of expression (6.59) should be as low as
possible. Therefore, the equation to minimize total cost subject to desired
component reliability may be formulated as follows:

minimize k“kﬂ{f] +k1( aS:k}+k3{§}+k4( ":!:i

T {(6.60)
subject to {S_E}{“szm"Fﬂ,f] ‘-lfl}}r

where _k=the total cost
k(S }=the cost function of the mean strength (monotonically
increasing function)
ki(5)=the cost function of the mean stress (monotonically
decreasing function)
ky(ag,,)=the strength standard deviation cost function (mono-
tonically decreasing function)
k4o, )=the stress standard deviation cost function (monotoni-
cally decreasing function)

y=obtained by the coupling equation for the desired
reliability level
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The Lagrangian equation for the above problem becomes:
~ = 1/2
F(5, 5, 05,40 0,0 \) =k +A[ S=5—y(adu+ o5 ] (6.61)

To find optimum solution, differentiate (6.61) with respect to each varia!:-lc
.S, 5,06, 0, and equate each differentiation to zero. The following
equations were obtained:

. 2
S_I_y{a.§;&+a:l: . =0 {6,&2}

Ko(0,)=Ayo,,/ VJods+ol (6.63)
E]( Tsih) E"'J"J"":'.'s'r.ir/ 'g'u.sz'lh+ U.rlr (6.64)

ki(§)=A\ (6.65)
k(S)==A (6.66)

where single overdots and primes represent partial c_lerivative with respect
to a,,, §, respectively, and double overdots and primes represent partial
derivative with respect to ag,,, S, respectively. The 1:'a]u= of S, 5, O5ps O
and A can be found by solving (6.62)-(6.66) to nbtmln aJII local o?unm, To
choose a global optimal solution, determine the Dh_]ﬁﬂh‘:"ﬂ I’unchonl{ﬁiﬁﬂ]
for all the local optimal solutions. For a more d_etal.lledrl analysis and
examples on the mechanical component reliability optimization, one should
consult references 45 and 95.

6.11 CONCLUDING REMARKS

Although the interference stress-strength mndeiling is a promising tech-
nique for calculating the reliability of a mechanical component, there are
several problem areas to be overcome. Some of these problems are oul-
lined as follows:

1. The representative stress and environmental quitiou urndn:r wh%ch the
component will operate may be difficult to estimate with certainty at
the design stage because of the lack of field data. !

2. Most of the material properties are time dependent. Furrmmc practical
purposes this factor may be disregarded b-ecau:&e of their slow change,
but generally, the time dependency can not be ignored. D:ue to the lzf.ck
of variability data of material properties, further assumptions regarding
time dependency may be required. 4

3, Although there is no lack of mathematical techniques or the probabilis-
tic models for the reliability evaluation, further refinement to these
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techniques and models will be useful to improve the mechanical reliabil-
ity prediction.

REFERENCES

I. Ang, A. H. 5., "Extended Reliability Basis of Structural Design Under Uncertainties ™
1970 Annals of Reliability and Maintainability Conference, pp. 642—649, IEEE, New
York.

2. Aitchison, J. and J. A. C. Brown, The Lognormal Distribution, Cambridge University
Press, New York, 1963,

3. Austin, W, H., “Development of Improved Gust Load Criteria for USAF Aircrafy”
1967 Annals of Reliability and Maintainability Conference, pp, 68-74. TEEE, New York.

4, Bazovsky, L., “Reliability of Rifles, Machine Guns and Other Small Arms,” Proceedings
Annual Symposium on Reltability, 1971, pp. 71-73. IEEE, New York.

5. Bell, R. and R. Mioduski, “Extension of Life of US Army Trucks" 1976 dnmual
Reliability and Maintainability Sympasium, pp, 200-205. 1EEE, New York,

6. Bennet, 8. B, A, L. Ross, and P. Z. Zemanick, Editors, Failure Prevention and
Reliability, Society of Mechanical Engineers, New York, 1977,

7. Bhattacharyya, G. K. and R. A. Johnson, Stress-Strength Models for System Reliability,
Reliability and Fault Tree Analysis, SIAM, Philadelphia, 1975, pp. 509- 532,

B. Billet, R. B., “Reliability of Hydraulic Controls in Space Vehicles,” National Sympasium
on Reliability, 1964, pp. 69-84. IEEE, New York.

9. Bimbaum, Z. W. and 5. C. Saunders, “A New Family of Life Distributions,” J. Appl.
Probl., pp, 319-327 (Oct. 1969).

10. Bompass-S5mith, J. H., Mechamical Survival: The Use af Reliability Dava, McGraw-Hill,
London, 1973,

1l. Bompass-Smith, J. H., “The Determination of Distributions that Describe the Failures
of Mechanical Components,” 1969 Annaly of Reliability and Maintainability Conference,
pp. 343-356, [EEE, New York.

12. Bratt, M. J, H. A. Truscott, and G, W. Weber, “Probabilistic Strength Mapping:
Reliability Vs Life Prediction Tool" /968 Annals af Reflability and Maimainabilite
Conference, pp. 501-510. IEEE, New York.

13. Bratt, M. J, G. Reethoff, and G. W. Wicber, “A Model for Time Varying and
Interfering Stress/Strength Probability Density Distributions with Consideration for
Failure Incidence and Property Degradation,” Proceedings ird Anmual Aerospace Relia-
bility and Maintainabilicy Conference, 1969, pp. 566-575. IEEE, New York.

14. Brewer, J. W., “Interim Scale Reliability Statemenis Consistent with Conventional
Materials Strength Criteria,” 1971 Annals of Reliability and Maintainability Conference,
pp- 63-71. IEEE, New York.

15. Burns, J. J., "Reliability of Nuclear Mechanical Systems,” 1975 Anrmual Reliabilicy and
Maintainability Symposium, pp. 163-169. IEEE, New York,

16. Carter, A D. 8, Mechanical Reliability, Wiley, London, 1972,

17. Chester, L. B., C. F. Noll, and D. Kececioglu, “Combined Bending-Torsion Fatigue
Reliability 111" 1975 Annual Reliability and Maintainability Symposium, pp. 511-518.
IEEE, MNew York,

18. Collins, J. A., G. T. Hagan, and H. M. Bratt, “Helicopter Failure Modes and Carrective

Actions,” 1975 Anmual Reliability and Maintainability Symposium, pp. 5304510, 1EEE,
Mew York.

’ 157

19, Davis, D. 1., “An Analysis of Some Failure Data” J. Amer. Stat. Assoc., pp. 113-150
(1952).

Dehard Laughlin, “Using Bayesian Methods to Select a Design

& x:a:énﬂi:i?:ba?ﬁynﬁﬁm N Conidence Cosfficient” 1966 Annals of Reliabitiy
and Maintainability Conference, 1EEE, New York, 1966, pp. 611-617.

21, Dennis, N. G., “PMR, NDE, Design Practices; Present and Future,” [977 Arrial

" Reliability and Maintainability Sympasium, Philadelphia, pp. 164 170. IEEE, New York.

22, Dillin, A. L., *Reliability Assessment of Army Weapons and Weapon Systems,” Pro-
ceedings of the Annual Symposium on Reliability, IEEE, New York, 1971, pp. 74-76.

23, Disney, R. L. and N, I. Sheth, *The Determination of the thlbility_of_ Flﬂm: by
Stress/Strength Interference Theory,” 1968 Anmial Symposium on Reliability, TEEE,
New York, 1968, pp. 417-422. ] i

24, Forrestor, E. R, and V. H. Thevenow, “Designing for Expected Fatigue Life,” 1968
Annalr of Reliability and Maintainability, pp. 511-519. 1EEE, New York.

25, Ghane, P. M., “Quality and Safety Factors in Reliability,” 1970 Annals of Reliability and
Maintainability, TEEE, New York, 1970, pp. 637-641,

26, Gupta, S. and P, Groll, “Gamma Distribution in Acceptance Sampling Based on Life
Tests,” J. Amer. Star. Assoc., Dec. 1961, pp. 942-970. IEEE, New York.

27. Gross, A. 1. and V. A. Clark, Swroival Distribution: Reliability Applications in the
Biomedical Sciences, Wiley, New York, 1975,

28. Gumbel, E. 1., Statistics of Extremes, Columbia University Press, New York, 1958,

29, Hald, A., Statistical Theory with Engineering Applications, Wiley, New York, 1952,

30. Haugen, E. B., “Statistical Methods for Structural Relinbility Analysis,” Mational Sym-
pasium on Reliability, IEEE, New York, 1964, pp. 97-121. .

31, Haviland, B. P., Engineering Reliability and Longlife Design, Van Nostrand, Princeton,
1964,

32. Heller, R. A. and H. 5. Heller, *Analysis of Early Failures in Unequal,” 1973 Anmual
Reliability and Maintainability Symposium, 1EEE, New York, 1973, pp. 198-200.

33, Heller, R. A. and M. Shinozuka, “State-of-the-Art: Reliability Techniques in Materials
and Structures,” /970 Annals of Reliability and Maintainability Conference, IEEE, New
York, 1970, pp. 635-636., N

34, Ingram, G. E,, C. R. Herrmann, and E. L. Welker, “Designing for Relinbility Based on
Probabilistic Modeling Using Remote Access Computer Systems,” 1968 Annals of
Reliability and Maintainability Conference, IEEE, New York, 1968, pp. 492-:2:;}, -

; . E., E. B. Ha C. Dicks, and S. Wilson, *Panel Discussion— Struc

% mg.“llﬂﬂmm sy:.ﬂ*'m on Reliability, IEEE, New York, 1965, pp. 154—169.

36, Inoue, K. and H. Daito, “Safety Analysis of Automobile Brake Systems h}l_FnuIl Tree
Methods,” Proceedings HOPE International JSME Symposium, Japan Society of Me
chanical Engineers, Tokyo, 1977, pp. 213-220.

37. Japan Society of Mechanical Engincers, Proceedings of the HOPE International Sym-
posium, 1979, LA L s

ohnson, C. W. and R. E. Maxwell, “Reliability Analysis tructures—

p Jﬂpproach,“ 1976 Annual Reliahility and Maintainability Symposium, pp. 213-217. IEEE,
Mew York.

39, Johnson, W. 5., R. A Heller, and J. N. Yang, “Flight Inspection Data and C:radt
Initiation Times," 1977 Annual Refiability and Maintainability Symposium, Philadelphia,
pp. 148-154, IEEE, New York.

40, Jones, L. G. and D. Thompson, “Essential Elements of Analysis From Army Test and
Field Data,” Proceedings Annual Symposium on Reliability, 1971, pp. 85-90. IEEE, New
York.



158 Mechanical Reliabiligy
41. Kalivoda, F. E. and K. W. Yun, “Modeling Mechanical System Accelerated Life Tests™

1976 Annual Reliability and Muintainability Symposium, pp. 206-212, IEEE, Mew York,
42, Kaa, J, H‘. K. "A Summary of Some New Techniques for Frilure Analysis,” P
fxi‘h National Symposium on Reliability, Washington D.C., 1960, p- 191. IEEE, New
ork.
43, Kao, J. H. K, “A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of
Electron Tubes,” Technometrics, 1, pp. 389407, 1959,
44. Kao, J. H. K., “Statistical Models in Mechanical Reliability."” i
y,” National Symposium
Refiabilicy, IEEE, New York, 1965, pp. 240-247, . -

45. Kapur, K. C, and L. R, Lamberson, Reliability in Engineering Design, John Wiley, New
York, 1977,

46. Karnopp, ., “Structural Reliability Predictions Using Finite Element Programs," [97)

Annals of Reliability and Maintainability Conference, IEEE, New York, 1971, pp. T2-80,

47, Kagn:i_o.ﬂu. D. and A. Koharcheck, “Wear Reliability of Aircraft Splines,” 1977 Annual

Reliability and Maintainability Symposium, Philadelphia, IEEE, New York, 1977, pp.
155- 163,

48, RKececioglu, D., "Why Design By Relinbility?™ 1968 4nnals af Reliabifity and Maintaina-
bility Conference, IEEE, New York, 1968, p. 491.

49, Kececioglu, D., “Reliability Analysis of Mechanical Components and Systems,” Nwel
Eng. Design, 19, pp. 259-290 (1972). F i

50. Kececiogly, D., “Fundamentals of Mechanical Reliability Theory and Applications to
Vibroacoustic Failures,” Proceedings aof Reliability Design for Vibroacoustic Environments
ASME, New York, 1974, pp. 1-38. .

51, chmgiu, D".J' W. McKinley, and M. Saroni, “A Probabilistic Method of Designing
8 Specified Reliability into Mechanical Components with Time Dependent Stress and
Strength Distributions,” The University of Arizona, Tueson, Arizona, Jan. 1967, (NASA
Report under Contract NGR 03-002-044.)

32 mﬁﬂmﬂhhﬂu. D., “Probabilistic Design Methods for Reliability and their Data and

Requirements,” Failure Prevention and Reliabiline €, P i
ASME, New York, 1977, P

53. Kececioglu, D, L. B. Chester, and T. M, Dodge, “Aliernating Bending—Steady Torque
Fatigue Reliability,” 1974 Annual Reliability and Maintainability Sympasium, IEEE, N
York, 1974, pp. 153-173. i o

54. Kececioglu, “I:I, and D. Cormier, “Designing a Specified Reliability Directly into a
C:u_mpcnmt, FProceedings Ird Annual Conference on Aerospare Reliability and Maintaina-
bility, 1964, Washington D.C., IEEE, New York, 1964, pp. 546- 565,

55. K.eonf:in[]u. D. and E. B. Haugen, “A Unified Look at Design Safety Factors, Safety
Margins and Measures of Reliability,” 1968 Annal af Reliability and Maintainability
Conference, IEEE, New York, 1968, pp. 520-530.

56, Ke:_min-,gtu, D. B, R. E. Smith, and E. A. Felsted, “Distributions of Strength in Simple
Fatigue and the Associated Reliabilities,” 1970 Annals of Reliability and Maintainability
Conference, IEEE, New York, 1970, pp. 659-672.

57. King, I. R, Probability Charts for Decivion Making, Industrial Press, New York, 1971.
58. Kjrkplllrink. 1., “Predicting Reliability of Electromechanical Devices,” Sixth Nartional
Symposium on Reliability and Quality Control, IEEE, New York, 1960, pp. 272- 281,

39. Konne, K., K. Nakano, and Y. Yoshimura, A New Acceleratad Fati

: atigue Test, The
Effncuve Random Peak Method,” 1975 Anmual Reliability and Maintainability Sym-
posium, 1EEE, New York, 1975, pp. 263-268.

60, Kllllma.n..L W. and G. W. Phillips, “Reliability Engineering Disciplines Applied to
Commercial Weapon Systems— Guns and Ammunition,” National Symposium on Relia-
bility, IEEE, New York, 1964, pp. 122-137.

159

g1, Kurtz, P. H., “Reliability Study of a Hydraulic Control System.Using the Hybrid
Computer,” 1971 Annals of Reliability and Maintainability Conference, IEEE, New York,
1971, pp. 81-85,

ﬂ. Lambert, R. G., “Mechanical Reliability for Low Cyele Fatigue," 1978 Annual Reliabil-

ity and Maintainability Symposium,, IEEE, New York, 1978, pp. 179-183.

§3. Lemon, G. H. and 5. D. Manning, “Literature Survey on Structural Reliability,” [EEE
Trans. Reliab., R-I3, (October 1974).

64, Lieblein, J. and M. Zelen, “Statistical Investigation of the Fatigue Life of Deep-Groove
Ball Bearings,” J. Res. Nat. Bur. Stand., 5 (Res, Paper 2719), 273-316 (1956).

65, Liebowitz, H., “Navy Reliability Research,” /1967 Annals of Reliability and Maintainabil-
ity Canference, [EEE, New York, 1967, pp. 33-353.

66. Lloyds, D. and M. Lipow, Reliability: Management, Methods and Mathematics, Prentice-
Hall, Englewood Chiffs, NI, 1961.

§7. Mann, N, R, R. E. Shafer, and N. D, Singpurwalla, Methods for Statistical Analysis of
Reliability and Life Data, Wiley, New York, 1974,

68, Manning, 5. D. and G. H. Lemon, “Plan for Developing Structural Criteria for
Composite Airframes,” 1974 Annual Reliability and Maintainability Symposium, [EEE,
New York, 1974, pp. 155-162.

69. Marble, Q. G., “Improving Mechanical Reliability of Digital Computers,” NMational
Symposium on Reliability and Quality Contrel, |IEEE, New York, 1965, pp. 136- 143,

70. Martin, P., “Reliability in Mechanical Design and Production,” Proceedings Generic
Technigues in Systems Reliability Assessment, Noordhoff-Leyden, Amsterdam, 1976, pp.
267-271.

71. Matney, V. D, “Reliability, Pollutants and Aluminum Raw,” /974 Annual Reliability
and Maimtainability Symposium, 1EEE, New York, 1974, pp. 174- 178,

72, Mechanical Reliability Concepts, ASME Design Engineering Conference, ASME, New
York, 1965.

73, Mesloh, B, “Reliability Design Criteria for Mechanical Creep,” 1966 Annals of Reliabil-
ity and Maintainability Conference, |EEE, New York, 1966, pp. 390-597.

74. Moreno, F. 1., “Reliability Estimate of a Space Deployable Antenna,” 1973 Annual
Reliability and Maintainability Symposium, |EEE, New York, 1973, pp, 182- 185,

75. Maresky, 1. 1., “Reliability and Maintainability Research in the USAF,” 1966 Reliability
and Maintainability Conference, IEEE, New York, 1966, pp, 769-T87.

76, Milsson, S, 0., “Reliability Data on Automotive Components,” [975 Annual Reliability
and Maintainability Symporium, IEEE, New York, 1975, pp. 276-279.

77. Niyogi, P. K., “Application of Statistical Methods and Information Theory to Structural
Reliability Estimates,” PhD Dissertation, Department of Civil Engineering, University
of Pennsylvania, Philadelphia, PA, 1968,

78. Miyogi, P. K., H. C. Shah, K. D. Doshi, and W. Tang, Statistical Evaluation of Load
Faciors for Concrere Bridge Design, Chicago, April 1969.

79, Quality Assurance: Reliability Handbook, Headquarters, US Army Material Command,
October 1968, (AMCP 702-C, AD 702 936), NTIS, Springfield, VA.

80. Redler, W. M., “Mechanical Reliability Resecarch in the NASA” /966 Annals af
Reliability and Maintainability Conference, IEEE, New York, 1966, pp. 763768,

Bl. Reethof, G, “Session Organizer's Report,” /973 Anmual Reliabilicy and Maintainability
Symposium, |EEE, New York, 1973, p. 181,

£2. Reethof, G., “State-of-the-Arti— Mechanical and Structural Reliability,” 1971 Annals of
Reliability and Maintainability Conference, |EEE, New York, 1971, p. 62.

83. Roberts, N., Mathematical Methods in Reliability Engineering, McGraw-Hill, New York,

1964,



160 Mechanical Reliability

84, Schatz, R., M. L. Shooman, and L. Shaw, “Application of Time Dependent Stress-
Strength Models of Non-Electrical and Electrical Systems,” Proceedings of the Reliabiliy
and Maintainability Symposium, January 1974, IEEE, New York, pp. 540-547.

§5. Shah, H. C,, “Use of Maximum Entropy in Estimating the Damage Distribution of
Single Degree of Freedom System Subjected to Random Loading,” 1966 Annaly of
Reliability and Maintainability Conference, IEEE, New York, 1966, pp. 598—604,

86. Shah, H. C, and W, H. Tang, “Statistical Evaluation of Load Factors in Structural
Design,” 1970 Annal of Reliability and Maintainability Conference, 1EEE, New Yaork,
1970, pp. 650-658.

87. Shaw, L., M. Shooman, and R. Schatz, “Time-Dependent Stress-Strength Models for
Non-Electrical and Electronic Systems,” 1973 Annual Reliability and Maintainability
Symporium, IEEE, New York, 1973, pp. 186-197,

88. Shinozuka, M. and M. Hanai, “Structural Reliability of A Simple Rigid Frame,” 1967
Annals of Reliability and Maintainability Conference, IEEE, New York, 1967, pp. 6367,

89, Shinozuka, M. and H. Itagaki, “On the Reliability of Redundant Structures” /9§
Annals of Reliability and Maintainability Conference, 1EEE, New York, 1966, pp. 605-610,

9. Shooman, M. L., Probabilistic Reliability: An Engineering Approach, MeGraw-Hill, New
York, 1968,

91, Singpurwella, N, D, “Statistical Fatigue Models: A Survey,” JEEE Trans. Rellab., R-20,
pp. 185189 (1971).

92. Spoormaker, J. L., “Reliability Prediction of Hairpin Type Springs,” 1977 Annual
Reliability and Maintainability Symposium, Philadelphia, IEEE, New Yaork, 1977, P
142147,

93, Spoormaker, J. L., “Design of Reliable Plastic Assemblies,” 1975 dnnual Reliability and
Maintainability Symposium, IEEE, New York, pp, 498-503,

94. Stiles, E. M., “Reliability in Mass-Produced Consumer Products,” National Symposium
on Reliability, |IEEE, New York, 1964, pp. 85-96.

95. Taraman, S. I. and K. C. Kapur, “Optimization Considerations in Design Reliability by
Stress-Strength Interference Theory,” JEEE Trans. Reliability, 24, (1975), pp. 136— 138,

96. Thomas, J. M., 5, Hanagnd, and J, D, Hawk, “Decision Theory in Structural Reliability,”
1975 Annual Reliability and Maintainability Symposium, TEEE, New York, pp. 255-262.

97. Tumelille, T. A, “Methods for Calculating the Reliability Function for Systems Sub-
jected to Random Stresses,” I[EEE Trans. Reliability, 23, 256-262 (1974).

98, Weaver, L. and T. Scarlett, “Reliability and Failure Distributions of Inertial Sensors,”
National Symposium on Reliability and Quality Comtrol, IEEE, New York, 1965, pp.
144153,

99. Weibull, W., “A Statistical Distribution Function of Wide Applicability,” J. Appl.
Mech., 18, 293-297 (1951).

100. Welker, D. R. and H. N. Buchanan, “Safety-Availability Study Methods Applied to
BART,” 1975 Annual Reliability and Maintainability Symposium, IEEE, New York, 1975,
pp- 269-275.

101. Yadav, R. P. 5, “Component Reliability Under Environmental Stress,” Microeleciron.
Reliability, 13, pp. 473-475 (1974).

102, Yadav, R. P. 5., "A Reliability Model for Stress Vs, Strength Problem,” Microelectron.
Reliability, 12, pp. 119=123 (1973).

103. Yao, J. T. P. and H. Y. Yeh, “Safety Analysis of Statically Indeterminate Trusses," /967
Annals of Reliability and Maintainability Conference, IEEE, New York, 1967, pp. 54-62.




