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Three-State Device Systems

A three-state device operates satisfactorily in its normal mode but can fail
in either of the two other modes. Typical examples of such a device are a
fluid flow valve and an electronic diode. Closed (shorted) and open failure
modes pertain to such devices.

Redundancy can generally be used to increase the reliability of a system
without any change in the reliability of the individual devices that form the
system. However, in the case of a system containing three-state devices,
redundancy may either increase or decrease the system reliability. This
depends upon the dominant mode of component failure, configuration of
the system and the number of redundant components.

An electronic diode and a fluid flow valve are typical examples of
three-state devices. Either of these components may fail catastrophically in
either the open or closed (shorted) mode. A given three-state device will
then have a probability of failure in the open-mode and a probability of
failure in the closed or shorted mode. Because a three-state device cannot
fail simultaneously in both the open and closed (shorted) modes, the
failures are mutually exclusive events, The failure of any one such device is
considered independent of all the others.

Three-state devices can be arranged in various redundant configurations
such as series, parallel, series-parallel, parallel-series, and mixed arrange-
ments. As these configurations become more complex, the analysis of
networks becomes more cumbersome, and redundancy can result in
decreased overall system reliability. This lower system reliability is due to
the redundancy of the dominant adverse mode of failure.

8.2 LITERATURE REVIEW

Careful consideration of the reliability of three-state devices was presented
by Moore and Shannon [27] and Creveling [7] in their 1956 papers on
electrical and electronic devices. Creveling developed the reliability and
failure equations for a diode quad arrangement, whereas Moore and
Shannon developed formulas for several relay networks.

w7



= Three-State Device Sy,

The year 1957 brought another development when Lipp [25] disc
the topology of switching elements versus reliability. The following
Price [29] specifically dealt with the reliability of three-state devices ina

parallel configuration and attempted to optimize the number of redundang

components. In 1960, Barlow and Hunter [1-3] used caleulus to optimize

the reliability of series, parallel, series-parallel, and parallel-series netwa y

They also computed the number of components that maximize the ex-
pected system life for these first two types of systems assuming componeng
life is exponentially distributed.

In 1962 Sorensen [35] applied the theory established by the previoysg
researchers on three-state device networks to several electronic circuits. His
primary approach was very similar to that of Creveling. In the same vear,
Cluley [6] published a paper on low-level redundancy as a means of
improving the reliability of digital computers. Also in 1962 James et al. [23)
reviewed the reliability problem and derived some systems reliability
equations for redundant three-state device structures. In 1963, Blake [4]
extended the work of Moore and Shannon [27] on networks of relay
contacts by investigating the open and short circuit failures of hammock
networks. Barlow et al. [3] extended their previous contribution to maxi-
mize the expected system life for components having exponential and
uniform time to failure distributions.

In 1967 Kolesar [24] extended the work of the previous researchers when
he optimized a series-parallel three-state device structure under con-
strained conditions. In 1970 Misra and Rao [26] developed a signal flow
graph approach. During the following 2 years, only one of the four studies
making reference to the subject appears to be important, Evans [19] gave a
very brief introduction to three-state device reliabilities in his paper and
Butler [5] made brief reference to it in his publication.

Since 1975 several contributions on the subject have been made by
Dhillon [8-17, 30-34].

8.3 RELIABILITY ANALYSIS OF THREE-STATE DEVICE
NETWORKS

The system reliability equations are developed for several configurations in
this section. More detailed derivations are described in Appendix.

8.3.1 Series Structure

In a series configuration any one component failing in an open mode
causes system failure, whereas all elements of the system must malfunction
in a shorted mode for the system to fail. The system reliability is given by
(8.1).

R:',Hl“'quf}— Il 4., (8.1)

fe=]
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R, =the series system reliability
f:-the l:mn:ll:u;‘i"jlrs of nonidentical independent three-stale compo-

nents .
g,;=the probability of open-maode failure of component i
qd:.=1he probability of short-mode failure of component i

¥

In the case of component constant open and short mode failure rates,

the open and short mode failure probability equations become [8]

A'-'J = +* I
au(t)= gy (1-e Vi (8.2)

A =(A+A,0
q,{r]-h_:h{l—f et (8.3)

where A_=the open-mode constant failure rate
A _=the short-mode constant failure rate

i =time

ivati i ion 8.5.2. To obtain
The derivation of (8.2} and (8.3) are shown in Sm:ua_n _
(8.2) and (8.3) set pu, =p,=0in (8.57) and (8.58), respectively. By substitut-
ing expressions (8.2) and (8.3) in (8.1) we get:

R(1)= ﬁ il . ?t:h {l_e—{i,,-i-.h,,}l}]
ju ] i &

| (8.4)
&

fel o

Short Failure Mode Probability. The system short or closed failure mode
probability, @, is given by

0,= 1"1 . (8.5)

=]

Open Failure Mode Probability. Probability of open mode failure for a
series system is given by

g.,=1- Il (1-4,) (8.6)

Where Q, is the probability of open mode failure of series network.
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Figure 8.1 An identical component series structure unreliability plot

& Plots of (8.5) anfi (8.6) are shown in Figure 8.1. This figure shows that
e open ma_de failure probability increases as the number of redundant
components in the series system increases.

Exfm;m'e 1. Consider two independent identical diodes connected in
series. Open and short circuit failure probabilities are 0.2 and 0.1 respec-
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tively. It is required to find the system reliability of the two diodes for this

simple arrangement.
In this case n=2, g, =0.1 and g, =0.2. Rewrite (8.1) for two identical

diodes
R,=(1—¢,) -4} (8.7)

For given data,
R,=(1-0.2)*—(0.1)*=0.63

8.3.2 Parallel Structure

For a parallel configuration, all the elements must fail in the open-mode or
any one of the elements must be in a shori-mode to cause the system to

fail. The parallel network reliability is given by
m L
R= 11 (1-¢,)- Il 4., (8.8)
=1 =1

where m is the number of nonidentical independent elements.

The open and short failure mode probability plots are the same as
shown in Figure 8.1. Because of duality, the short failure mode probability
replaces the open failure probability and vice versa. The same duality

concept applies to (8.1) and (8.8).
Example 2. Suppose the data of Example 1 is used for parallel configura-
tion; evaluate the system reliability by using (8.8)

R=(1—¢,F—q2 =(1-0.1" (0.2 =0.77
The parallel system reliability is 0.77.

8.3.3 Series-Parallel Network

This is a combination of series and parallel configurations. System reliabil-
ity is given by (8.9) for n identical independent units, each containing m

independent elements:

R-{I— ﬁq.,.]ﬂ—{lﬁ ﬁ{l-qul}" (8.9)

i=1 i=1

Example 3. Consider the reliability evaluation of series-parallel arrays of
the identical fluid flow valves with g, =0.2, g, =0.1, n=2 and m=4.
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For n=2 and m=4 (8.9) becomes

R=(1-g)y'~{1-(1-q,)*)

For g, =0.1, g4, =0.2, the system reliability

R=(1-02)~{1-(1-0.1)*)=0.58

&3.4 Parallel-Series Structure

Th_is -r:x:.mfigurntfnn is a dual of the series-parallel network. The system
reliability equation for a configuration containing m identical units and
number of nonidentical series elements becomes

R-(I—jlil?u)m—[l—‘fllfl —qﬂ.}r (8.11)

Exfm;pfe 4. Use the date given in Example 3 and evaluate the parallel-
series network reliability. Therefore

R=(1-g2)'- {1-(1-¢,)%)"
=(1-0.1)"~ {1-(1-0.2)*)* (8.12)
=0.9438

8.3.5 Bridge Network

This lfnnfigumtic-n is shown in Figure 8.2, The following bridge reliability
equation, R, is taken from reference 25:

Rb“‘l_gal_'ga: (8.13)

where Q,, is the network open failure mode probability, for k=1
Q. is the network short (close) failure mode probability, for k=2

and

5 5 5 5 5 4
QDK-EHII’!_- ﬂ“t'.'_' H¢;'_ H':';'_ H‘I}g- H‘I’f

i=] i=2 Fm=] jm=] iw=| i= |
il i3 iwed
s 4 4 s
+ _H o+ [T+ I &+ [1 o (8.14)
=1 i=2 i=1 i=2
iwd 4 im2,3 iwed, 4
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Transformation Technique o

R L2
a | 5}
L 4 |

for

As shown in Figure 8.2, the bridge network is composed of five ele-
ments, i=1,2,..., 5, where the element number 3 is known as the critical

element.

84 DELTA-STAR TRANSFORMATION TECHNIQUE

The reliability evaluation of series, parallel, and series-parallel networks is
widely discussed. To evaluate the reliability of a bridge, or other such
complex structures, the theories in the literature are difficult to apply. The
delta-star transformation [8] is a simple approach for such problems. This
technique transforms a complex structure to a series and parallel form.
Thereon the network reduction technique may be applied to obtain relia-
bility of transformed configuration. The technique introduces a small
error, which can be neglected for practical purposes.

Transformations are carried out in terms of both of the failure modes
instead of simply reliability or unreliability as is the case for a two-state
device structure.

The resulting delta-star transformation formulas are developed by find-
ing the leg equivalent, as illustrated by Figure 8.3.

8.4.1 Open-Failure Mode

The delta-star leg equivalents are obtained in the same manner as the
simpler two-state component case. Figure 8.4 illustrates the leg equivalents
for the open-mode failure case.
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Figure 84 Delta-star equivalent legs.
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Again, by using the independent probability laws for the series and
structures, the equivalent legs of the block diagrams as shown in

Figure 8.4a, b, and ¢ result in (8.17), (8.18), and (8.19), respectively:

Geries Case. Series system open-mode unreliability

0,=1- I (1-4..) (8.15)

i=1

‘Where g,, is the components’ open-mode unreliability, i=1, n.

Parallel Structure Case. Open-mode system unreliability
o,= 1l a, (8.16)
=1

With the aid of (8.15) and (8.16) the equivalent legs of the block diagrams
are transformed, respectively, to the following:

|'_[1_‘fu,:'{l_‘:‘uf}'[]_{l“qpr.){l'qu,,:'lfi‘a,,c (8.17)
1-(1-g,)(1-4,,)=[1- (-2, )1-%,)]| %,  (818)

1-(1-0,)(1-2,)=[1- (10, )(1-0,,) ]2, @:19)

From these simultaneous equations result the following delta-star conver-
sion equations:

s [1= (1= 0= 2 )1~ 20} o ][ 1= {1 = (1~ )1~ ) o] i
3 (1= (=0 20, )1~ €00) ) e

(8.20)

[ 112 01=0- 000 =)} {1~ (10 = )=o)} es] |
oy []—{l-—l:]—-!I,ﬂ}[l_‘fuﬂ}}qﬂ.‘r]
(8.21)

e (1= (1= (1= )1~ o) e | [1 = {1 (1= G0 ) (1~ Go0)} o e
o (1= (1= (1= 20, )1~ )} o)
(8.22)

w we EEE
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o
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Figure 85 A short-failure delta-star transformation.

8.4.2 Short-Failure Mode

Similarly, as for the open-failure mode, Figures 8.5 and 8.6 show the
short-failure mode equivalent configurations.

Again, with aid of the independent probability laws for parallel and
series structures, (8.25)-(8.27) are obtained from their equivalent corre-
sponding legs of the block diagrams of Figure 8.6a—c.

Series Case. System short-mode unreliability
m
Q,= HI i (8.23)
fu=

where g, is the components” short-mode unreliability, i=1, n.

Parallel Structure Case.
0,=1- lII (1-g,) (8.24)
=

With applications of (8.23) and (8.24) to the equivalent legs of the block
diagrams of Figure 8.6a— the corresponding equations become

. =1-(1-q,.,4,)1-q,,) (8.25)
9.49,~1-(1-¢, 9., )1-q,,) (8.26)
8. = 1 _{] _qsﬂqa".}(l _‘Lc‘) {5'2?}

Dl

q".l!ﬂ

£y
=

()

(&)

leh

Flgure 8.6 Delta-star equivalent legs.
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Solving these equations simultaneously yields

o= (207 908,)0-0,)](1-0-4,,0,,)0-4,)] |
i [ }= (1 = Q:‘cq:,n}{] L " ]] d
’ (8.28)
o o [0-0.8,)0-0)][1-0-4,.0,)0-4,)] |
2 [1-(1~4,,4,,)(1~q,,)] :
(8.29)

i, = [I_“-_q'f!q’n){l-q’.«r}][l_(l_thq’u]“-q'u]] -
% [1-(1-9,9.,)1-q,,)]

(8.30)

It is readily seen that (8.28), (8.29), and (8.30) are all interrelated. After
computing the unreliability value by use of the first equation, the computa-
tion for the other two is made easier because the first computation is used
in their evaluation.

The same sort of argument applies to the open-failure equations (8.20),
(8.21), and (8.22).

Example 5. A bridge network example is solved here to illustrate the use
of these formulas. As an example, the network shown by Figure 8.7 is one
where the delta configuration is identified with the labels 4, B, and C.

q,=02 q, =01, q,=0.2 g, =01
—  —7
g =02
—_— L) I ——
q, =01

L S I g
q'=ﬂ.2,q”=ﬂ.l 4, = 03, g, =01

Figure 8.7 A three-state bridge structure.
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Its equivalent open and short failure mode pmbahﬂ:;;y :;1;;; f:; Ft]:::
situation are obtained by using {E.?.Q}—{E.Zl} and .{B. J— :
tively. The numerical results _a:-]:tained are as follows:

Open-mode failure probability:

G, ™ 0.01 4., =001 Qo™ 0.01

and
g, =0.482 g, =0482 g, =0482

ionshi i redrawn as its equivalent as
ati allow Figure B.7 to be nt
'l'hlhmﬂc :;1 Figure Eﬂ. The resulting total open and short mode probabilities
of failure for Figure 8.8 are

0,=1-[1-{(1-4,)(1-a,)} {1-(1-¢,)(1~4,)} ][ -4.]

(8.31)
and
0, =[1-(1-4,2.)(1-4,4,,) 9. (8.32)
By using (8.31) and (8.32)
Q,=0.022 Q,=0.088
q,, =00 go, =01
q,:- 0.482 0, = 0.2
] A e
lr-iI|I|:'~ =00
C—={ — -jue
9,," 0482
| s 1
tu =0.m qnj =1
q,,= 0482 4,,=0.2

Figure B8 A transformed bridge structure.
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thereby giving bridge reliability

Ry=1-0,-0,=0.89

85 REPAIRABLE THREE-STATE DEVICE SYSTEMS

This section presents several mathematical models of

repai
MDSI l‘.‘lf thﬁﬂ mﬂdgls are ﬂ‘i’ﬂiiab]c iﬂ T_hE re[._-renm lI't ep ll'&h'c S}'EtElns,

erature,

8.5.1 Analysis of a Three-State System with Two Types of Components

E;gﬁ;ﬂnd';]l; s [;:‘Ievr.lupﬂ] by using lh:e supplementary variables technigue
Somg .39 ;h ree-state model [9]_ discussed in this section is shown in
Clgu =+ 1€ components of this system are divided into classes (i.e.
ass‘I and II). If any one component of Class [ fails, the system 'li
expenience a complete system failure, A component faijm:e of Class I] W?”
cause a catastrophic system failure. Some typical examples of suc: :
system are alumrnatic machines, fluid flow valves, a rotational mechani aI
system that jams so that rotation is blocked, a shaft that shears so l]::«:ll:ltJ Tn

input rotation causes no output : |
rotati i
system. P on, and an electrical or electronic

System states are defined as follows:

1. Normal state. The successful functioning of a device.

2. Complete failure state. Total system failure (i.e., the machine doe
Operate at all}, normally caused by the failure of a Class | mmpn::u::;l

3. Catastrophic failure state. The system failure state in which a system -::-r‘

equipment carries out unacceptable ti
failure of a Class IT mmmm‘:nli, operahions, usually caused by the

nilyl
Complete
failure gtata
MNormal
state
Catastrophic
failure state

e

Figure B9 A three-state Markov model,
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Suppose an automatic machine carries out some operations on assembly
line items. The automatic machine is composed of many component parts;
therefore, the components of the machine can be divided into two classes
(i.e,, Class I and II). A component failure of Class I causes the complete
failure or breakdown of the automatic machine. A failure of any one
component of Class 11 will cause a catastrophic failure of the automatic
system (this type of failure will initiate some unwanted operations on the
assembly line items).

Obviously, to restore the automatic machine back to its normal state,
repair is necessary, Repair times are arbitrarily distributed.

The following notations and definitions are used to formulate this
Markov Model:

P (t)=the probability of the system being in its normal mode at
lime f.

P, (», 1)A=the probability that at time ¢, the system which has failed,
because of the failure of its ith component in Class I, is
being repaired and the elapsed repair time lies in the interval
(v, y+aAt) fori=1,2,3, n.

P, (x,t)A=the probability that at time ¢ the system that has failed,
because of the failure of its ith component in Class II, is
being repaired and the elapsed repair time lies in the interval
(x,x+A) for 1=1,2,3,n.

n,(»)JA=the first-order probability, that the ith component of Class I
is repaired in the interval (v, y+4), conditioned that it was
not repaired up to time y.
p;( x YA =the first-order probability, that the ith component of Class
Il is repaired in the interval (x, x+A), conditioned that it
was not repaired up to time x.
A, =the constant failure rate of the ith component of Class IL
y,=the constant failure rate of the ith component of Class I.
s=the Laplace transform variable.

Assumptions

1. Failures are statistically independent.
2. A failed system is restored as good as new.

A Mathematical Model., The integro-differential equations (and associated
boundary-initial conditions) associated with Figure 8.9 are

[%+A+TJ‘P0U}=§| -’:Pz.r[-‘vflﬂ,{ﬂ‘i"

v 2 f PO (8.33)

im

Bl T T oy i e AL )
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a @
T By +'-’I;(J'}}'P:,;{}‘.r}=ﬂ (8.34)

d d
[ 35+ 25 +000) |- Pt =0 (8.35)
PJ.,I(“-I}nT!'Pu“} Pl,a'{ﬂ-f}-hi'Pﬂ{'}
Fy(0)=1, at =0 other initial condition probabilities are zero, where
A=A =2 Yi

i=1 jm]

:Solving the above integro-differential equations by Laplace transforms and
integration (including some substitutions) will yield

Py(s)= - - (8.36)
[(-""—h"‘\"}_ E }"IGIJ{J}“ E TlGI,p[-?]]
i=1 i=1
where
Grds)=[ m-‘-‘"“ﬂ;{ﬂﬂp(— [ ’u.{y}aar]@
Gau()= [ "e " (s)exp( - [mx)ax)ax
Since
P-.aiﬂ==f:f’,.;{y.s]d5a (8.37)
2(s)= [ TPy (%, 5) dx, (8.38)

where P, ,(s), P, /(s) are the Laplace transform of probabilities Py (1)
Py (1) that‘the system is under repair due to the failure of the ith
component in Classes I and 11, respectively. Therefore,

1-G, (s
fi.-{-']-f’n(s}[-—:'—}}kj (8.39)
for j=1,2;i=1,2,3,n; ky=v; k=X,

The Lap_lane transforms of probabilities P,(t) and Py(r), that system is
under repair due to the failure of any one of Classes I and II components,

Repairable Three-State Device Systems L]
respectively, are
B(s)= ﬁlfﬁ,.(s] for? i 2 (8.40)
Substituting (8.39) into (8.40) yields
p()= 3 ns) [ =252 iy
for j=1,2; ky=v;: ka=A, (8.41)

Therefore, for given repair probability density functions G, (1), the state
probabilities Py(1), P,(1) can be obtained by simply taking the inverse
Laplace transform of (8.36) and (8.41), respectively.

The steady-state solution, if it exists, of (8.36) and (8.41) can be obtained
by employing Abel’s Theorem to Laplace transform,

limsf(s)= lim f{1). (8.42)
50 =T ]
Mean time to system failure (MTSF) (if exists) can be obtained from

MTSF= lim Py( ) (8.43)
31—+

More detailed analysis of similar models using the method of supplemen-
tary variables are presented in references 39-41.

8.5.2 A Repairable Three-State Device with Constant Failure

and Repair Rates
This model [30] is a special case of the model presented in Section 8.5.1.
The system transition diagram is shown in Figure 8.10.

Assumptions

1. Failures are statistically independent.
2. The repaired system is as good as new.
3. Repair and failure rates are constant.

Notation
P,(1)=the probability of the state in question, at time ¢; i=0,1,2

A=the constant failure rate in question
j=the constant repair rate in question
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{short mode failure state)

My
Figure B.10 A repairable Markov model.

From Figure 8.10, the resulting differential equations are:

dP,
__;f’} = = (A A B ()=, Py(£) + iy Po(1) (8.44)
dp

;,EI} -Pa{f:'hl = Py(t) (8.45)
dP

40 B0 -2 P0) (8.46)

Fy(0)=1 Fi(0)=P,(0)=0

The Laplace transform of (8.44)-(8.46) vields

(54X, +A,)Po(s) =y Py(3) =y Py(5) =1 (8.47)
~ A Po(5)+ (5+py ) Py(5) +OPy(5) =0 (8.48)
= Po(5)+O0P(5)+(s+p; ) Py(s)=0 (8.49)

The coefficient of the above simultaneous equations can be written as
follows:

(54X +2,) — K —#2 I
=X (s+p) 0 0
X, 0 (s+m)] 0
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_*.The solution by Cramer’s rule yields:

1" (s4p ) (s+p;)
Pols)= s[ 24 s(py+pa A +A) + (i + A ?ﬁrﬁ‘/z"‘h 2#1) ]

(8.50)
)= 3[32+3(F|"‘F:"'}H+:"1:'+F|F:+-}"~|Fz+h:#|]
?u![.r+;.t1} (B 52]
PJ(S}- .!'[.Iz+.!.'l:p.||+p.1+h|+l1]+(p1p1+}.tp1+h1#1]]
The roots of the denominators of (8.50)-(8.52) become
ks ks
—{F|+#z+hg+hz}iwi¢|"‘Fz"‘:"t:+;'\1}2“‘1{F|F:+-}‘|F:+h:ﬂz]

2

Now, (8.50)—(8.52) can be expanded in a partial fraction form

(s4+p Ns+p,)
B2} ok =S

I ol Vo l+{k|+}£|}(k1+p1} 1 _(k:+ﬂi}(k:+l‘z:| 1

kiky s key(ky—ky) 5=k, keylky—ky) (s—k;)
(8.53)
A(s+p,)
)= S ko —ky)
Ay (M AR,) C(patk A1 8 .54
_'kl'l:2+ k(k,—k;) (s—k,) ky(ky—k3) (s—ky) ( )
Ay(s+p,)
B = k()
Mapy , akitdap) 1 (g tky)A, 1 (8.55)

Kk k(k—ky) (5—k)  k(k,—kj) (s—k;)
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In time domain, (8.53) and (8.55) become

_ Bk (ky+p ki) | o, [ Gt Mky+p,)
e T e e R b Jers

(8.56)

P](I:'= htﬂ'z + { ?'qk:"':'l.j[.l.; ]E*I‘— [——{Fl-l-kz}h: }ehr

Kk, ki(ki—k;) ka(k,—k;) (8.57)

Aap Agki+A (g, +k3)A
Py(t)= 2 |+[ A TAly | . LM 2)Aa L,
Rk T (ki—ky) |© T Rk k) ¢ (8.58)

Since
kyky=ppa+Apa+A,u,
kytky=—(p+pa+d+A,)
therefore, the addition of (8.56)—(8.58) will yield unity, that is,
Foy(t)+P(1)+P(1)=1

The equipment availability is

o= o
] St RS

_ [ (ka+p )(ka+p,) }ekl'
ki(k,—k;)

The availability expression is valid if and only if k, and k, are negative. As
! becomes very large, the steady-state availability equation can be ex-
pressed as

. [ Lo
lim - L
= (8.59)

8.5.3 A Mixed Markov Model with Two Three-State Devices
(Master-Slave Relationship)

'I'hj; mixed Markov model [34] has the two units modeled in series. One
device has normal, partial, and catastrophic states and the other has
normal, open, and closed mode states (Type II). Repairs are performed
only when an equipment fails in its partial mode.

Py,
Figure 8.11 A master-slave Markov model.

Ao At

A typical example of such a system is a fluid flow valve commanded

from an instrumentation control panel where the control panel represents

the first type of device (Master) and the fluid flow valve represents the
second type (Slave). Such practical examples are numerous and may often
be encountered in a modern electrical power station. The transition dia-

‘gram for this case is shown in Figure 8.11.

Abbreviations and MNotations

P(t)=probability of the state in question, at time ¢
()(+)

N,=normal mode state of the three-state devices (i.e., master and
slave), respectively, i=1,2.

C, =catastrophic failure state of the “master” three-state device

C, =closed mode failure state of the “slave” three-state device

P, = partial failure state of the “master” three-state device

0,=open mode failure state of the “slave” three-state device

A, =constant partial failure rate of the “master” three-state device

A,=constant catastrophic failure rate of the “master” three-state de-
vice

As=constant failure rate from partial to catastrophic failure state of
the “master” three-state device

A, =constant close mode failure rate of the slave three-state device

A, =constant open mode failure rate of the slave three-state device

jt, =constant repair rate of the master device

f=time
At =time interval
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Assumptions
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1. Failures are statistically independent.
2. The repaired system is as good as new.
3. Failure and repair rates are constant.

The state differential equations resulting from Figure 8.11 are

dPy nf1)

T+“’~|+:"~1+-"‘3+hq}PN,N,{f:'=F|PP,H,{-'] (8.60)

APy (1)

T+{Jt]+}\.‘+:lis+#1}Pplxj{r]=h|lﬂ~|~:{r} (8.6]}
PN|N1[[}]=] PP.N;{G}BG

Solving the above differential Equations by Laplace transform yields

A A
P {'.]_{ 1 }e*!"— | Kyt
PNy ky—k, kz_ki e™ (8.62)
Pun(n)={1- Bt Rl tho) Joso
r B |
Ag+A A +p, +k,
+ Bk, e*a! (8.63)
where
Sl ~N+VNI—44M
}r = 24
and
A=1

M=AA;+X A+ 25 +20,0, + XA XA + A4 +A A +A,A
FAAS FA A+ Ay Hhap +Agp,
Therefore,

System reliability =Py (1) + Py (1) (8.64)

. Repairable Three-State Device Sysiems -

8.5.4 A Repairable Markov Model of Two Units in Series I

Consider two three-state devices arranged in a series configuration [34].
The repair is performed only when one of the devices fails in its closed
mode, assuming the other one is still operating. Two fluid flow valves
operating in series represent a good example. The transition diagram is
shown in Figure 8.12.

Abbreviations and Notations

P(t)=probability of state in question, at time {
(-X°)
N.=normal mode state of the both three-state devices, i=1,2
C,=close mode failure state of the first three-state device
C, = close mode failure state of the second three-state device
i1, =constant repair rate of the first three-state device
ju,=constant repair rate of the second three-state device
A, =constant close mode failure rate of the first three-state device
A, = constant close mode failure rate of the second three-state
=device
A, = constant open mode failure rate of the first three-state device
A,=constant open mode failure rate of the second three-state device
r=time
At=time interval
s=Laplace Transform variable

Assumptions

|. Failures are statistically independent.
2. Repaired device is good as new.
3. Failure and repair rates are constant.

Hydl

Figure 8.12 A series two-unil repairable Markov model,
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The differential Equations associated with Figure 8.12 are

dPy (1)

7 T A+ A ) Py (1) =P (1), + Py et )u;

dPe (1)
dt

dPy.c(1)
dt

+{;'LI+'}"3-+FI}PC|N;{"}-PH.H;(I]-"-|

(A A+ 1y )Py (1) =Py (1A,

Py f0)=1 Fen(0)=0 Py f0)=0

The values of Py, (s5), Pyc(5), Fe nf5) are obtained from the above

differential equations:

(54X, +X5+p ) (s+X, +A, +p,)

bie Three-Stare Devive Svstems

(8.65)

(8.66)

(8.67)

Py ¢ T

b

Figure 8.13 A series two-unil repairable Markov model.

Pyn(5)= A (8.68)
(s+A;+A; +A,+A,) — By iy
e AL et o R s e
o :
: 0 (242 4+ +Ag) 3. Failure and repair rates are constant.
Afds+d +A, +
Fewfs)= I{ I A s ¥ a) (8.69) Abbreviations and Notations
=Ao(s+h, +A, 4+ 1)=probability of state in question at time f.
Py )= =2 224 Fika) (8.70) il .

The steady-state solutions (if they exist) of (8.68)~(8.70) can be obtained

by employing Abel's Theorem to Laplace Transform, that is,

Hmyfis) = Him (1)

8.5.5 A Repairable Markov Model of Two-Unit in Series 11
(FPartial and Catastrophic Failure Modes)

Consider two three-state devices arranged in series [34]. The three-state
device is repaired only when it fails in a partial mode (i.e,, the other
three-state device is operating successfully) or both devices are operating in
their partial failure mode. Two automatic machines performing some
operations on the assembly line items represent a typical example. The

transition diagram for this series configuration is shown in Figure 8.13.

(8.71)

N,=normal state of both three-state devices, i=1,2
C, =catastrophic failure state of the first three-state device
C,= catastrophic failure state of the second three-state device
P, =partial failure state of the first three-state device
P,=partial failure state of the second three-state device
A,=constant partial failure rates of both the devices, respectively,
i=1,2
pu,=constant catastrophic failure rates of both the devices, respec-
tively, i=1,2
,=constant system repair rates, i=1,2,3
A,=constant failure rate from partial to catastrophic failure mode of
the first unit or device
A .= constant failure rate from partial to catastrophic failure mode of
the second unit
1= time
Ar=time interval
s=Laplace Transform variable
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The differential equations associated with Figure 8.13 are
dPy n (1)
Y (A Ay +py +F2)‘"~.~,“]=TlP;-,r,“}‘*T:P;-,N,{” +¥: Py p,
(8.72)
dFPy p (1)
T T +H(A +p+y FA)Py p 1) =Py (1)A, (8.73)
dPPJN,{’]
—di'_ +'”"2 tpt+y; +'}'*3.}le,n,“}=-PH‘H,{”A1 {SJ“}
dPp p(1)

S +(Ay+A, + 1) Ppp (1) =Py (1)A; + Py p ()N, (B.75)
Py 'ﬁ; {{I}=Il. at t=0 other initial condition probabilities are zero
e values of Py v (5), Py p(5), Pp,(5), P e
above differential EA::|1:|!.51l.iu:rnsm:rljmJ e A AR ok (8

Pyy(s)= — (i +A s A (s +p, A+ A N s+A+A )

A
(8.76)
(542 +As+py+pq) -1 —y -
_h 3
A= “a i 0 (54+p,+X +7 +A
-2 1 HA )
! 0 (s+py+d;+y+A,) 0 '
0 (s+dy+h,+7,) = ks

Ppp(s)=— A+ +2s +ys +A3)} + (g +A, +1 +A)A A,

A
fx! (8.77)
Pruis)= Uikt A s +1‘](j+:"‘3 Hha+1)A, 8.78)
Pupfs)= “Ag(s+p, A, ""fii?‘s]{-"";"s +A +1) 8.79)

8.5.6 A Two-Failure-Mode System with Cold Stand-By Units

Mathematical mﬂd?l [16] presents a system with two failure mode units
?;}Jd N stand-by units. The operational unit can be repaired at one of its

ure modes, Thjs may be regarded as a minor failure mode, in a case
:wher: I!]e on-line failures can be repaired at the place of .bqui ment
installation or the unit repair time is less than the unit repianemanrtime
When the Ium't repair is costly and time consuming, the failed unit ‘s+
replaced with one of the stand-by units. Some of the Itypir.al examples r.‘:f
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such a system may be the production line machinery, transformers, motors,
‘heavy duty electrical switches, and so on.

- Assumptions

1. It is assumed the repaired or replaced unit is as good as new.
2. The unit repair rate is faster than the unit replacement rate.

'3, System fails only when the last standby unit fails.

‘4. The unit failed in its catastrophic mode is never repaired.
5. Failures are statistically independent.
6. A unit has two failure modes. Units can not fail in their standby mode.

Mathematical Model. The transition diagram of this system is shown in
Figure 8.14. The following definitions and notations are used to formulate
this mathematical model:

N =number of identical standby units
n=1last state number of the system
jt,=constant replacement and repair rates, respectively, of the oper-
ational unit for i=1,2 and p, >p,
A, = constant unit replacement mode failure rate
A, =constant noncatastrophic mode (repairable mode) failure rate
(=time
s=Laplace transform variable
Py(t)=unit operational mode probability at time ¢
P,(¢)=unit repairable mode probability at time ¢
P,_,(t)=unit failure, system operational and, system repairable mode
probabilities at time ¢, for i=2,1,0 respectively, and k=
4.7.10,...,(n=1)
P (1)=system failure mode probability at time ¢

The system differential equations for the Figure 8.14 model are

Py(t)=—(A, +A ) Plt)+Py(1)p2 (8.80)
Pi(t)=py Pyft)+ Fo1)A (8.81)
Pl_o(t)= =, P o)+ Pr_a(2)A; (8.82)
P (t)=—(A +A, )P (1) + Pe(t)p2 + Py (1) (8.83)
Pi(t) = —pa PL1) + Py (1) (8.84)
Pt)y=P,_(1)A; (8.85)

for k=4,7,10,...,(n—1)
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Figure 814 A transition diagram.

At Fy(0)=1, other initial condition probabilities are equal to zero.
n=3(N+1)—-1 for N>I (8.86)

where the prime denotes differentiation with respect to time ¢. The Laplace
transforms of the solution are

Xig-

—1) uni dby Markov model,
Pq{.s]- {J‘+F-z} (8 87) Figure 8.15 An (N - 1) units standby ov
((s+ma)(s+A; +X;) =Ap,)
Pos)A \
P.is}-—~—{{;‘+i ]1} (8.88) Notation
2 [
X,=system operational (i.e., for i=0,3,6, 9..:.{:1—2], failure mnfle t};p-e
F, (ﬂnM (8.89) I (ie., for i=1,4,7,10,...,(n—1) and failure mode type II (i.e., for
& g ' i=2,5,8,..., n) states _
P(r)=system operational (i.e., for i=0,3,6,9,.. ..{n‘—E]. failure mode
P._(5)= Puls )z +Pu_o(s)py (8.90) type 1 (i.e., for i=1,4,7,10,...,(n—1), and failure mode type II
& Tt . (i.e., for i=2,5,8,..., n) probabilities at time { _
P (5)A A,=constant type 1 and type II failure mud;] failure rates of the
P bkl | operational unit, respectively (i.e., for i=1,
g Al ¢ it,=constant type I and type Il failure mode state replacement rates of
P, (5)A the failed unit, respectively (i.e., for i=1,2)
=2t n=number of system states ‘ .
S d . (852 N=number of units in the system (ie., the operational unit plus
standby units)
t=tme
8.5.7 Availability Analysis of a Two-Failure Modes System with s=Laplace transform variable
Nonrepairable Stand-by Units
Assumptions

This model considers a system containing N identical units of which one is
functioning and (N — 1) are standbys. As soon as the operational unit fails
in any one of the two failure modes, it is replaced by one of the (N-1)
standby units. The system functions until the last standby unit is opera-

tional. The transition diagram of the Markov model is shown in Figure
8.15.

1. Failures are statistically independent.
2. Restored unit is as good as new.

3. Cold standby units cannot fail.

4, Failed unit is never repaired.
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The system of differential equations associated with Figure 8.15 are

2
Py(t)= ~IEIMP=.U} . (8.93)
Flx-n(t)=Fx_5(1)A; =P y(t)u, (8.94)
for K=3,6,9,12,...,(n-2)
ﬁ}—:}“}':ﬂx—a}[f}hj =P, (8.95)
for K=3,6,9,12,...,(n—2)
2
PHI}='ﬁx—z;(f}F|"‘P{x—u“}h‘ 2 A Py(1) (8.96)
fm1

for K=3,6,9,12,- - (n-2)

Fon(1)=Fi_5(1)A, (8.97)

Fo()=F, _»(t)h, (8.98)
At Fy(0)=1, other initial condition probabilities are zero.
n=(3N-=1) forN>1 (8.99)

where the prime denotes the derivative with respect to time (. Solutions to
the above system of differential equations in the s domain are

1
Bl (8.100)
s+ XA,
=]

Fix- 3;-':4' A,

ﬂx-—l:“]‘“ 3+
2

(8.101)

for K=3,6,9,12,...,(n-2)

Fin-3(5)A,

B =
(K 2;(3] s+,

(8.102)
Px(s}-{ﬂx_z«,{slm+ﬁx_.,t‘s}pz}——l_,_—— (8.103)
5+ E h:
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for K=3,6,9,12,....(n—2)

P{n—li{"}?‘]
5

Pn(s)= (8.104)

P.[s}ww (8.105)

To obtain state probabilities invert (8.100)-(8.105) to time domain [i.e.,
take inverse Laplace transforms of (8.100)-(B.105)). The system opera-
tional availability, 4,, can be obtained from

4,="S P@) (8.106)
im0

for i=0,3,6,9,...,(n—2)

8.5.8 A k-out-of-n Three-State Device System with
Common-Cause Failures

This section presents a generalized Markov model to represent repairable
k-out-of-n units system with common-cause failures [14]. This mathemat-
cal model can also be applied to represent repairable series or parallel
(two- or three-state device) network subject to common-cause failures.
Some of the common-cause failures may occur due to (a) undetected
design errors; (b) operator and maintenance errors; (¢) common environ-
ments; (d) common manufacturer; (e) common energy source; (f) same
repairman; or (g) equipment failure event—fire, flood, tormado, earth-
quake. A typical example may be a redundant configuration composed of
two motorized fluid flow valves with common (control circuit) power
supply. This type of situation is frequently encountered in power stations.

Assumptions

1. Three-state devices are identical.

2. The redundant system is only repaired when all devices fail in either
failure modes (i.e.. open, short, closed), or if the redundant system fails
due to common-cause failures.

3. Common-cause failures can only occur if two or more three-state
devices are present in a system.

4. A failed system is restored as good as new.

5. Common-cause and other failures are statistically independent.
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Notation

A, =constant open mode failure rate, for i=0,1,2,3,..., k
a,=constant short mode failure rate, for i=0,1,2,3,..., k
y,= constant common-cause failure rate, for i=0,1,2,3,...,(k=1)
{55 = constant short failure mode repair rate
p,=constant open failure mode repair rate
ji,=constant common-cause failure mode repair rate
P(1)=state probability at time ¢ for i=0,1,2,3,....n
(Note: for i=n represents open failure mode probability at time ¢)
P.(1)=common-cause failure mode probability at time ¢
Py (1)=short failure mode probability at time ¢
N=total number of devices in a system
#= Laplace transform variable
t=time
The associated equations with Figure 8.16 are

Po(t)=—(Ag+ag+yy) Polt) + Poy (1 Jugp + P )+ P (1 )y

(8.107)
Pi(t)=—(A+a,+7 )P 1)+ Fylt)A, (8.108)

Pi(t)=—(Aytay+y, ) Pylt)+ P(1)A, (8.109)

P ()= —(Ap_Fay_ v )P (1) + P (1), (8.110)

for k=23.4,...,(n—1),

PU) == (A + e ) PL1) +Po_ (OA_, (8.111)
for k=(n-1),

P/(t)=—puoP(1)+ P (1A, (8.112)

&

Pop(t)=—pguPeu(t)+ 2 a,P(t)  for k=n—1, (8.113)
=1

k—1
P(t)=—p Plt)+ E 1 PAt) for k=n-—1 (8.114)
i=0
n=N for N2
A, =(N=i)A for i=0,1,2,3,.... N

At Fy(0)=1, other initial condition probabilities are equal to zero.

s

Ha

Figure B.16 Transition diagram.

The prime denotes differentiation with respect to time f. Laplace trans-
forms of the state probability equations are

L Py (5 g+ PAs )i+ P8 )po
Py(s)=—H -"fiu"'“n""'fu (8.115)
P(s)= ————H’:‘:“i’:i“ (8.116)

Py(s)A
f'iis?*;:ﬁf;'rﬁ (8.117)
P*_|{-!'}'= Pk—z{"}}"t—i (E.HE]

SHA gt F Y
for k=2,3.4,....(n—1),

LT R g e ) (8.119)

LACILTS (8.120)

k
2 o, Fi(s)

i=1 = — ¥
PsH{J}=~?P—Sﬂ— for k n—1 {ﬂ 12]}

P oa o= T e o i e
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Figure .17 A system transition diagram.

k=1
2 vP(s)

ﬂf.?:l‘—‘i_-i#—— for k=n—1. (8.122)
&

To use this model for series configuration interchange open failure mode
probability with short (close) failure mode probability.

8.5.9 A 4-Unit Redundant System with Common-Cause Failures

This model [13] can be used for devices with two mutually exclusive failure

modes and common-cause failures. The transition diagram of the model is
shown in Figure 8.17.

Assumptions

1. Common-cause and other failures are s-independent,

2. Common-cause failures can only occur with more than one unit, 4-units
are identical.

3. Units are repaired only when the system fails. A failed system is
restored as good as new,

4. System repair times are arbitranily distributed,

The transition diagram is shown in Figure 8.17,
Notation

i=state of the unfailed system:; number of failed units; i=
0,1,2,3

Three-State Device Systemy

Repairable Three-State Device Systems 2
. j=state of the failed system; j=4 means failure not due to a
common cause; j=4,cc means failure due to a common-
cause; j=4,sc means short [closen_i} mode -::-f faﬂ_un:
P,(t)=probability that system is in unfailed state i at time h; -
P(y, t)=probability density (with respect to repair ume}‘t : T-‘
failed system is in state j and has an elapsed repair time o
}=yrepair rate (a hazard rate) and pn::-bahi!jt:.r density function
of repair time when system is in state j and has an elapsed
ir time of :
ﬂf=;?|’:las]tam mmn{on-cause failure rate of the system when in
state i; f, =0
A, =constant failure rate of a unit, for other than common-cause
failures, when the system is in state i; i=0,1,2,3
s=Laplace transform variable :
= constant short (closed mode) failure rate when the system

is in state i:0,1,2,3

!-IJIU']: gy

Equations (8.123)—(8.128) associated with Figure 8.17 are

JP;E'} +{hﬂ +ﬁ0 +Tn]Fu["}= J;WPJ-,c:':J"v "}F'l, f,[y}dy

+f:ﬁ{y.f}m{y}éﬁj;mﬂ_u{f-f}m,,.:{}*]t#

(8.123)
dP;E” +(\+B 1) P () =N Py (1)=0 (8.124)
for i=1,2,3; By=0

dp (v, 1) dp(y.1) s -

Ja, =% +u(»)p(y,t) ( )

palo,1)=APy(1) (B.126)

Pacclo, 1)=P,(1)B,+ P (1), +Py(1)B, (8.127)

Pi,_u[a- t)=P,(¢ }Jﬂg"l'-F:[”TL"'Pz(f ]Tz"'Ps{-r}'fg (8.128)
A=0-1}A
ye={i=2)y

Plo)=1 for i=0 other P{o)=0
P(y,0)=0  forallj
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The Laplace transforms of the solution of (8.123)-(8.128)

Fu{xj- [34‘-10 +ﬂo + Yo (JBD + :‘:;: + -IHI )Gi.t:{‘r}

Az
Gal5)A4 ( N o h.nh 3
_—— +—+—=
A_‘i 9 Al * Az * A3 )G"'“J [8-129}

Gj{s]Ef“mmp{—sy}qj{y}dp forj=44,ce, ord, se

AIEE+;\];‘BI+T1
L]
AIEA.(I+?L:A+.32+T2} ABEA2{3+A3+T,}
1 I}"!
P
P(s)= 'f} for i=1,2,3 (8.130)
1-
P,[.r]=h,P,[x]—?['r—] (8.131)
= x 1—=G, .o(s)
ccl8)= ED‘B’F'{"} —— (8.132)
3 =
Py (s)= fEnriﬂ[s}J]—%ﬂ (8.133)

'l:o nbtain_tiu_]: domain solutions, (8.129)—(8.133) can be transformed for
given repair times distribution.

8.6 RELIABILITY OPTIMIZATION OF THREE-
~ OlkE STATE DEVICE

T]:u's‘ scctim:‘ deals with optimizing the number of redundant elements to
obtain maximum reliability. Here, we focus on obtaining the optimum

zzlmber of redundant elements for the series and parallel configuration
Y.

References 23
8.6.1 Series Nerwork
Using expression 8.1 the series system reliability of identical elements is
given by
R=(1-g9)"—4q7 (8.134)

To obtain optimum number of clements differentiate (8.134) with re-
spect to n and equate it to zero. The following results are obtained

3—f =ajlog,a, —q;log,q, =0 (8.135)

where ap=(1—g,).

Thus, rewriting (8.135) in terms of n optimum number of elements n*,

we get
- [ lus.q,}
‘| log.ag

=il /a) (6.159)

8.6.2 Paralfel Network

The following expression is directly obtained from (8.136) by reasoning the
duality of the series to parallel form

. _ [log.(log go/l08 2,) |

137
Iﬂg'{ﬂ'!fh}] {E ]

where a,=(1—q,) and m®* is the optimum number of elements. Optimi-
zation of series or parallel network reliability subject to constraints is
presented in reference 24.
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