CHAPTER 2
The Preliminaries

Introduction

An appreciation of certain basic probability concepts is essential for the
development of reliability models and their subsequent evaluation. In general,
probability mathematics provide the medium for examination of systems
which exhibit random phenomena, i.e. behave in accordance with probablistic
rather than deterministic laws. It has been assumed that the reader is familiar
with the basic probability concepts normally encountered in an undergraduate
engineering course. Many text books and, therefore, courses introduce
probability theory either as an abstract mathematical concept or through the
use of apriori situations such as dice or playing-card type examples. In these
cases, it is often difficult to develop an easy and effective interface between
the basic reliability and probability concepts. This chapter reviews the basic
probability theory required in subsequent chapters with emphasis on utilization
in system reliability modelling and evaluation.

Sample Space

The set of all possible outcomes of a random phenomenon is called the sample
space, sample description space or possibility space. As an example consider two
transmission links each existing either in the up state (U) or the down state (D).
The description of the possible states at any time is given by the set

s = {(1U,2U),(1U,2D),(1D,2U), (1D, 2D)}

A set which has a definite number of elements is called a finite set. A set which is

not finite but whose elements can be put in a one to one correspondence with

the set of natural numbers is said to be countably infinite or denumerable. Both

of these types, the finite and the denumerable set come under the general name

of countable set.

As another example, consider the load on a pumping system. This may assume

" any value between L , the minimum load and L X the maximum peak load. The

sample space S, therefore, consists of all points s such that

Los<s<L,
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The interval (L, L,) contains a noncountable infinity of members. Such a
sample space which is not countable is called uncountably infinite or simply
uncountable.

Events

Consider the descriptions (1U, 2D) and (1D, 2U) in the example of two
transmission links. These descriptions define the event that one of the
transmission links has failed. Similarly if both the transmission links are needed
to keep the system in operation, the set*ﬁ (1D, 2D), (1U, 2D), (1D, 2U) } defines
the event that the system has failed. An event can therefore be defined as a set
of descriptions and the event £ is said to-have occurred if the outcome of the
randem phenomenon is a member of E. As the sample space contains the
descriptions of all possible outcomes of the random phenomenon under
consideration, an event may also be defined as any subset of the sample
description space. In the case of demand on the pumping system, the subset
A= {s: L,<s<L | ¢ defines the event that load is greater than or equal to L.
Whenever the load is in the interval (L., L ), the event ‘load is greater than L.’
is said to have occurred. The events are sets and therefore the algebra of events
is essentially the concepts of set theory:

Random Variables

A random variable is a quantity which assumes values in accordance with certain
probabilistic laws. A random variable which assumes discrete values is called a
discrete random variable and one which assumes values from a continuous interval
is termed a continuous random variable. This definition of a random variable is
sufficient for the purpose of this book. A more precise definition of a random
variable is as a function defined on a sample space in which certain technical
conditions are satisfied. The random variable relabels the descriptions of
outcomes contained in S in terms of real numbers. The domain of the random
variable is the sample space S and the range is contained in the set Re of all real
numbers.

Consider again the example of the two transmission links. Let X be the
function defined on the sample space S, where X denotes the number of
components down. The values of this discrete random variable are given below:

Xs) =0,s = (1U,20)
=1,s = (1U,2D),(1D, 2U)
=2 ,s5 = (1D,2D)
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In the above example, instead of describing the outcomes as shown above,
they could be assigned integer values by a random variable Z such that
Z=0,s=(1U0,20)
=1,s = (1U,2D)
(1D, 2U)
(1D, 2D)

=2,5

i

It

=3,5

The random variable Z depicts the state of the system and its different values
are termed the state space. If a device is put into operation at time ¢ = 0, the
time to failure can be denoted by the continuous random variable X. Some
other examples of a continuous random variable X assuming a value x are

_ temperature (-273° C<x<(e<), the load on a power system (L,<x<L ) the

repair time of a component (0 <x <o) and the noise voltage at an amplifier
output point.

Probability Laws

In application, the functional form of the random variable is not usually of great
interest. The main focus is usually on the probability with which the random
variable assumes a certain value. Probability is a function which assigns a number
between 0 and 1 to a set of points (event) in S. The statement that the random
variable X assumes a value in set B of real numbers, implies that the event defined
by the subset, (s: X(s) is in B) occurs. Therefore

P[{s: X(s)isin B}] = P[Xisin B]

This is the basic formula for obtaining the probability function of the random
variable X from the probability function which exists on the sample space S on
which the random variable X is defined as a function. Some other types of events
in terms of a random variable can be defined for fixed numbers x, a, b

[X=x] = {s: X(s) =x}

[X<x] = {s: X(s) <x}

[X>x] = {s: X(s) >x}
[a<X<b] = {s: a<X(s)<b}

A discrete random variable assumes only discrete values X, i= 0,1,2,...from
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the set Re of real numbers. The probability density function for a discrete random
variable is defined by

px(x) = P[X =x] ‘ 2.1
This function should clearly have the following properties
(1) px(x) = 0 unless x is one of xg, Xx1,X,, . . .
(i) 0 <px(x) <1
(iif) ZPX(X) = Z PlX=x] =1
i ' 1
The probability density function for a discrete random variable is sometimes
also called the probability mass function of X. The probability function PX(B)
of the random variable in terms of probability mass function is given by
- Px(B) = P[XisinB] = Y px(x;)
x;€B
The probability distribution function Fy(x) of the discrete random variable is
given by

Fx(x) = PlX<x]

Y px(x)
x;<xe

It should be noted that the domain of the distribution function is the set of all
real numbers and the range, being a probability is the interval (0,1). This is in
contrast to the case of a random variable whose domain is the sample space.

A continuous random variable can assume any value over a continuous
interval. Since the number of elementary events in a continuous interval is
infinite, the probability of the random variable X assuming a value exactly
equal to x is zero. This is, however, not an impossible event. For example,
although the time to actual failure of a component may be x, the probability
of this event happening is zero. The probability density function of the form in
Equation (2.1) is therefore not suitable for a continuous random variable. The

probability density function f- "x(x) of a continuous random variable X is so
defined that

Pla<x<sl = [ fe(ray ¢2)
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' The probability distribution function F X(x) can be now written as

Fy(x) = P[—< X <x]

I

x
J Ix(y)dy : 23)
1t follows from Equation (2.3) that
fx(x) = Fx(x) 24)
The function fy (x) has the following properties
1. fx(x) is non-negative

2. Jt:f(x)dx =1

3. The function fy (x) is continuous at all but a finite number of points, i.. it
is piece-wise continuous.

When we are dealing with the distributions of operating and down times, the
random variable X is non-negative and its density function is zero over the

- negative range. It is sometimes more convenient to work with the complementary
function of F(x) called the survivor function

Fx) = P[X>x]

|7 ey @5)
= 1—F(x)

It follows from this expression that
&) = —F (2.6)

In reliability modelling and evaluation one function which is used extensively
and which is equivalent to f(x) is the hazard function. In practice, depending
upon the circumstances employed, it may be known by a variety of names, age
specific failure rate or simply failure rate, repair rate, hazard rate, force of
mortality etc. A detailed interpretation of this function is given in the next
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chapter while developing the concept of frequency. This can be defined as

Plx <X<x+Ax|x<X]
= |
#x) Aa:r—r)lo* Ax @7

With the interval length approaching zero, Equation (2.2) can be written as

. Plx<X<x+ Ax]
= ljm ——2 =" 77
fx®) A;I—?o* Ax ’

Equation (2.7) can be rewritten in the form

o PIx<X<x+Ax] |
o) = Jim, Ax Plx<X] 8)
_ fx(x)
?f,x(x)

1t is usual to drop the suffix X denoting the random variable unless there is a
likelihood of incorrect interpretation and this has been done in this text. Using
Equations (2.6) and (2.8)

_8®

T

I

~ 2 llog F ) @9

Integrating Equation (2.9) and using the condition that & (0) = 1

exp [* f: &(») dy]

&)

and therefore

16 = 6x) exp [— /. ¢(y>dy]

This expression shows that ¢(x), the hazard function uniquely determines
the probability density function. The probability density function, the
probability distribution function, the survivor function and the hazard rate
function are mathematically equivalent.
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Expectation

The probabilistic behaviour of a random variable is completely defined by the
probability density function or distribution function. It is, however, often of

interest to obtain a single value which may represent the random variable and

its probability distribution. One such characteristic value is the expectation or
mean. This is denoted by E(x) and given by

E(X) = Z x; PIX = x;]
i
=Y x;p(x;) if Xis a discrete random variable
or :
400
= J xf(x)dx - if X is a continuous random variable (2.10)

The expectation is said to exist if the series or the integral involved converges
absolutely, i.e.

¥ 1x;] p(x;) < oo for the discrete case
and ‘ )

oo
f [x]| f(x)dx <eo for the continuous case

—oe

The expectation or the mean value has a meaningful interpretation in terms
of the average of a sample. This interpretation is provided by the law of large
numbers. Assume that there are n random variables X v X g X, " which are
identically distributed as X and each has a mean m. This set of # random
variables represents a random sample of 1 observations X’ v X po - ,Xn. The
sample mean, which is also a random variable is given by

)?=X1+X2+”'+X"
n

According to the law of large numbers for any constant ¢ >0

r}i_r)r;P[lX*m1>c] =0 (2.11)

This implies that as the sample size increases, the sample mean approaches
the mean of the random variable. Thus if the random variable X is-observed
many times and each time the arithmetic mean is calculated, it will approach
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the mean or the expectation of the random variable X as the number of
observations becomes very large.
An important result concerning the sum of the random variables is given by

E (2 X,.) = éE(Xi)

That is the expectation of the sum of a group of random variables is equal
to the sum of the expectations of the random variables. This result holds even if
the random variables are not independent.

Variance

The arithmetic mean indicates the central tendency and provides a value around
which the random variable X is distributed. Two or more random variables may
have the same mean value but the deviations from this value may have different
likelihoods. The information regarding the scatter of the values around the mean
is provided by the variance of X, designated V(X)

V(X) = E[(X — E(X))*] (2.12)

Y (x; —m)*p(x;) for the discrete case
7

and

roo
f (x —m)*f(x)dx for the continuous case

The variance is a weighted average of the values (X-m)? and therefore if large
it means that the distribution of X is such that large deviations occur with a
comparatively high probability. On the other hand if the values are near m with
large probability, the variance is comparatively small. The variance, therefore,
provides us with a measure of the spread of the distribution. Equation (2.12)
can be put into another form more suitable for computation

I

V(X) = E[(X —EX))’]

E(X?) — (E(X))? - (2.13)

The variance is often denoted by 6 and has the dimensions of X?. The square

root of the variance ¢ has the dimensions of X and is called the standard
deviation.
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Covariance

Consider the two random variables X and Y. The quantities (X - E(X)) and

(Y - E(Y)) are the deviations of the two random variables from their respective
means. The expected value of the product of these deviations is called the
covariance and is given by

Cov(X,Y) = E[(X —EQX))(Y — E(Y))]

E(XY) — EQO)E(Y) (2.14)

Il

In terms of the joint probability density function f(x,y) of X and Y, it is
given as

Cov(X,Y) = f_jfj: (x —m)(y —my) f(x,y)dxdy (2.15)

where f(x, y) is so defined that

P(x<X<x+dx,y<Y<y+dy) = f(x,y)dxdy

The covariance gives a measure of the tendency of the two random variables
to vary together. If both the deviations have the same sign, then the sign of the
product is positive and otherwise it is negative. Therefore, if the two variables
tend to vary in harmony, the sign of the product will be positive with a larger
probability and the covariance will, therefore, be positive. On the other hand if
the two variables tend to vary in opposition, the sign of the covariance is
negative. When the two random variables are independent, their covariance is
zero. This tendency to vary together or in opposition is often measured by the
dimensionless quantity called the correlation coefficient

_ Cov(x,Y)
Cxy = NZYi0a) (2.16)

which can be shown to lie in the range [-1, 1]. The correlation coefficient is the
covariance normalized by the product of the standard deviations and its sign

is the same as that for covariance. The statements made about the sign of the
covariance, therefore, apply to the correlation coefficient too. It should be
noted that correlation and non-correlation are similar to independence and
interdependence but the two are not identical. If the two random variables

are independent then C'yy- = 0 but the reverse is not always true, i.e.
independence does not necessarily follow from non-correlation. Correlation
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implies dependence but the reverse is not necessarily true i.e. Cyy 7 0 does not
follow from dependence.

Moments

The expectation of a real valued function g(X) of X is given by

@ Elg(@)]

Y gCe)p(x;) if X is discrete
i

() Elg0)] f _Mg(x)f(x)dx if X is continuous. .17

One simple function whose expectation is of interest is the kth power of
X,ie.gx)=X K The expectation of this function is called the kth initial
moment of X or the distribution of X. Therefore the kth initial moment of
X is given by

m(X) = my,
=Y xFp(x;) for the discrete case
i
= fmxk f(x)dx for the continuous case. (2.18)

A somewhat more useful concept, the kth central moment, is similarly
defined by

M(X) = M,

Y G —m)ep(x;) if X is discrete

i

I

f”o (x —m)*f(x)dx if X is continuous. (2.19)

oo

It can be seen that the mean is the first initial moment, the mean square
value is the second initial moment and the variance is the second central
moment.

In a similar manner, the mixed initial moment for the multi-dimensional
distribution can be defined as
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M by by X 1 X2y, X)) = EQXE XE o XFny (2.20)
and the mixed central moment is given by
Mkl' Bysen kn(leX2> . -‘, Xn)
= E[(X;—EX )X —EX ) .. (X, —E(X,))" 7] @21

The covariance is therefore the first central mixed moment of X and Y.

Coefficients of Skewness and Excess

It can be seen from Equation (2.19) that odd moments vanish fora distribution
which is symmetrical about the mean value. The third moment can, therefore, be
used as a measure of the asymmetry of the distribution. Asymmetry is more
conveniently measured as a dimensionless quantity and the asymmetry
coefficient or skew coefficient is given by

A = My/(M;)*"? (2.22)

The coefficient of excess also gives information about the form of
distribution by comparing it with the normal probability density function near
its mode and is defined by

G = Mi/(M,)* 3 | (2.23)

M, = 3MZ for the normal distribution and therefore the coefficient of excess
is zero. In the case of a distribution having the same variance. as the normal,
G > 0 indicates that the distribution has a sharper peak than the normal
distribution and similarly G < 0 indicates a comparatively flatter peak.

Transforﬁl Methods

Operational or transform methods are employed for transforming the problem
into a functional form which at first glance appears to have nothing to do with
the original problem but which often facilitates its solution. They are used in
many branches of mathematics especially in solving differential equations. One
technique of importancein probability theory is the method of characteristic
functions. The characteristic function of a random variable X is defined by

¢x(0) = E[e"X]

= f_” exp (i0%) f(x) dx (2.24)
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where

i=+-1
and f(x) = the probability density function of X

The probability density function can be found from the characteristic
function by the inversion formula :

1) = J_*“’ #0) exp (—ibx)d6 225)

There is a one to one correspondence between the characteristic function
and the probability density function. Therefore, two characteristic functions
which are equal at all points are the characteristic functions of the same
distribution function and vice versa.

Differentiating (2.24) k times

da*e(0)
Wgy = =
$EO) = —

i* f x* exp (i0x) f(x) dx
This is with the assumption that the kth derivative exists. As 8 - 0

#90) = i* [ rexyax

= i*my,

Therefore the kth moment of the random variable X, , if it exists, can be
obtained from the kth derivative of the characteristic function evaluated at
zero
= -k
my, = i"*¢®(0) (2.26)
An important result in probability theory is that the characteristic function
of the sum of several independent random variables is the product of the
characteristic functions of the random variables. Let
Y=X+X,+...+X,

where X; are the independent random variables. Then

oy(0) = E(@Y) = (0K Xab o 4 Xy
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Since the random variables are independent
dy(0) = E(X) E@?%) . . E(e®%n)
= ¢x (0)0x,(0) . . 6x,(0) 227)

Another transform often used is the moment generating function, defined
for all real numbers by

v(o) = E@E¥)

I

4o g )
j e “f(x)dx for the continuous case.

Il

Z %% p(x;) for the discrete case. (2.28)
i

As in the case of the characteristic function, the following results are
important

my, = y*(0) (2.29)

Uy(0) = ¥x () ¥x,0) ... ¥x,0) (2.30)
when
Y=X+X,+...+X,
X being independent random variables.
The Expression (2.29) is suitable for calculating the kth initial moment and
the central moments can be calculated from the initial moments. The moment

generating function about the mean m or in fact any other point can also be
defined as

Ym©) = EEX™™7)
= ¢ y(6) 231)

The kth moment about the mean can be calculated from its kth derivative
evaluated at zero, i.e.

My, = yP(0) (232)
The main advantage of the characteristic function over the moment generating

function is that it always exists whereas the moment generating function may not
exist.
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For an integer valued discrete random variable X having a probability mass
functjon p;, the moment generating function can be simplified by substituting
z=e

¥@) = Yp (2.33)

This function is called the probability generating function of X or the Z
transform of X. It can be shown that

(k) 0
Pr = w‘,;,g—) (2.34)
my = ¥P(1) (2.35)

Reliability modelling is usually concerned with non-negative random variables
and for these the Laplace transform is very useful. In general if g(¢) is a real
function of a variable ¢ defined for £ > 0, then the Laplace transform of this
function is given by

Lig®)] = z(s) = fom g(t) e sdt (2.36)

where s is a complex variable. The inverse Laplace transform is defined by

L) = 80) = 5 [ g0 et as
wheni=+/—1

In practice it is seldom necessary to perform this contour integration and the
inverse is calculated by expanding g(s) into partial fractions and using the tables of
Laplace transforms. The following results are of importance with respect to this
book.

1. The Laplace transform of the derivative of a function g(t) whose Laplace
transform is g(s) is given by

EO| _ o) g0
L[ o~ ] = () ~2(0") @37)

Here g(O+) is the limit of g(f) as t approaches zero from positive values. Very
often this will be written simply as g(0).
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2. The Laplace transform of an integral is given by

L[fot g(u)du] = 26) (2.38)

N

3. The Initial Value Theorem states

£(0") = lim g(r) = lim sZ(s) (2.39)
50 Pl

4. The Final Theorem states that
g() = lim g(¢) = lim sz(s) (2.40)
t—roo 50
if the limit g(¢) exists
t—>o0
While considering the Laplace transform of a probability density function, it

should be observed that except for the sign of s it is the same as the moment
generating function. Therefore

LIf®)] = f(s) = EE™)
As flx) is a probability density function it follows from (2.36) that
fO =1

Using the result (2.38), the Laplace transform of the probability distribution
function is given by

F(s) = £§—) (2.41)

and the Laplace transform of the survivor function is given by
= 1—1s
F(s) = ~s—f() (2.42)

The f(s) can be written as

o0 k vk
f(s)=E[E itk ]
& T
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=X D am (2.43)
k=0 :
- o (R
The kth initial moment of X is given by the coefficient of T in the Taylor

expansion of f{s). Similarly for the kth central moment My, ¢"*f(s) should be
expanded.

Some Special Distributions

This book is mainly concerned with distributions of continuous random
variables such as the time to failure and time to repair. Any function which is
non-negative and whose integral over its range equals one, can be a probability
density function. There are, however, some special mathematical forms which
are often used in reliability modelling as probability density functions. The
following section examines these special distributions.

1 Exponential Distribution

A non-negative continuous random variable is said to have a negative exponential
distribution if it has a probability density function defined as

fx) = pe?* (2.44)

where p is some positive constant. The corresponding distribution function is
given by

F(x) =f: faydu = 1—e™#" (245)

The survivor function is

R@) = [ fwdu = o (246)

The hazard function is
_ 1)
R(x)
=p (2.47)

é(x)
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The Laplace transform of this distribution is given by

7 = L] = £

The mean = (— 1)f(s) 1520 = (P + ) 50 = L (2.48)

It can be seen from Expressions (2.47) and 2.48) that the hazard rate for the
exponential distribution is constant and equals the reciprocal of the mean of
the random variable having this distribution. Since the hazard rate uniquely
determines the probability density function, it follows that if the hazard is

constant then
x
p exp —f pdu
[}

=p e Px

fx)

That is the distribution is exponential. It is worth repeating that only the
exponential distribution has the property that the hazard rate is constant and is
equal to the reciprocal of the mean. The second initial moment is

ma = - DOm0 = 5

and therefore the variance

M, =

bn‘ N
“ch —

=5 (2.49)

©

The standard deviation is-1 and the coefficient of variation equals one. The
graphs of the probability density, probability distribution and the hazard
function are shown in Fig. 2.1. The exponential law corresponds to the
maximum randomness of the lifetimes of the components. The life of a
component observing the exponential law has the interesting property that the
previous operating time of the component does not effect the residual or
remaining lifetime distribution. Consider that a component whose lifetime is
represented by an exponentially distributed random variable X is operated up to



24  System Reliability Modelling and Evaluation

time ¢ then the distribution function of ¥ = X -7 is given by

Fy(x) = PIX —t<x|X>1]
= PX<x+1t|X>1]

_ Pt<X<x+1]
T PX>1]

JEttpe M du
o Pt
=1—e

Fx(x)

1l

Probability density Survivor function Hazard rate
function
§

10 Py S

Fig. 2.1 Characteristics of the exponential distribution

It can, therefore, be seen that the distribution of the residual life time of the
component is independent of the time for which the component has been
operating. It is as if the component forgets how long it has been operating and
the breakdown occurs not because of gradual deterioration but a randomly
occurring failure. The negative exponential is the only probability distribution
having this memory loss property. Its proof is left to the reader in Exercise 1.

The exponential distribution bears an important relationship with the Poisson
distribution that if the number of events per unit time is given by a Poisson
distribution then the distribution of the interevent time is exponential. Suppose
that a component on failure is replaced by an identical component and the
number of failures per unit time is A, then if failure occurs according to the
Poisson law, the distribution of failures in time # is given by '

o -At
pr(t) = P[Number of failures = k] = %‘E*
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That no failure occurs during the interval (0, ¢) is equivalent to having the
inter failure time greater than ¢, i.e.

L=F(t) = polt) = e ™

Differentiating both sides with respect to ¢

f(6) = xe™

It can therefore be seen that for Poisson failures, the distribution of the time
between failures is exponential.

The exponential distribution has desirable mathematical properties and is
used widely for representing operating and repair times. The data collected in
connection with complex equipment shows that their time of operation is
indeed well described by the exponential law. It can be shown mathematically

- that if a complex piece of equipment has a large number of stochastically

independent components such that each component is replaced immediately on
failure and every component causes equipment failure, than after a long time the
distribution of operating time of the equipment is well approximated by the
exponential law. Though the exponential law generally holds for the operating
time during the useful life of the equipment, no single hypothesis seems to exist
for the repair time. It is generally realized that an exponential representation for
the repair time may not be valid in many cases. When the operating time is
exponentially distributed and its mean value is much larger than the mean down
time, then the steady state values are not generally significantly affected by the
nature of the repair time distribution. The question of non-exponential
distributions for down times is examined in detail in Chapter 6.

2 Normal Distribution
A continuous random variable is said to be normally distributed if its probability

density function is of the form

1

1) = - e Gmml20T gy o< x < oo (2.50)

[

where 0 is positive and m is any constant. The graph of (2.50) is bell-shaped and
is symmetrical about x=m as shown in Fig. 2.2. In the special case when
m =0 and o=1, this function is called the standard normal density function.
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The probability distribution for the normally distributed random variable is
given by

F(x) = L r = u-m20" gy, (2.60)
o2 Joo

This function cannot be expressed in closed form in terms of familiar
elementary functions. The function F(x) can be transformed into the standard
normal distribution by a simple change of variable

Expression (2.60) becomes

1 x-m
Flx) = —f ° ey
21 J e

The values of the standard normal probability distribution function are
obtained by numerical integration and are tabulated in every elementary
statistics book. The use of these tables is left as an exercise to the reader. The
moment generating function of a normally distributed random variable is

¥(6) = B™)

1
o2m

fw ex0 ‘3‘(J<—m)’/2z72 dx
—co

Making the substitution

X—m

z = so that x = 0z + m and dx = odz

&m0 ! J‘“q e—(z’—’zo@z)/zdz
21 J i

¥(6) T

- em8+0702/2 1 J‘w e—(z-ue)zl2dz

V2n

—o0
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Making the substitution w =z — 08, dz = dw

1 *® —w?2
\2m j—m ¢ dw

= ¢mo+a’072 (2.61)

E(X) = mean = yP(O)lgq = (m + 0%0) ™00y

\L’(e) - em6+v:1262/2

=m

E(X?) = ¥P@)lg=o = [(m+0%0)* +0*] "0+ 012y

= m?+ g2
Therefore

Var(X) = E(X?)— (Ex))* = o*

The parameters m and o, therefore, represent the mean and standard
deviation of the normal distribution. The domain of the normal distribution,
extends from - o« to + o, The operating times of the components are limited,
however, to the positive values. If a normal distribution is to be used for
modelling the operating or down times of the components, then its truncated
version can be used. The truncated normal distribution is given by

fx) = gm0’ x>0 (2:62)

ao\/2n

where g is the normalizing factor and is

2,
e ¥ 12 du

\/1 .[

2n Jm
o

The survivor function is given by

R(x) = f: f(u) du

"and the hazard function

6(x) = %

The hazard rate of the normal distribution is a monotonically increasing
function and the graphs of the probability density function, probability
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distribution function and the hazard rate are shown in Fig. 2.2

Probability density Survivor function Hazard rate
function

10

Y S

0

Fig. 2.2 Characteristics of the normal distribution

3 Log-normal Distribution

A non-negative random variable X is said to have a log-normal distribution with
parameters m and ¢ if ¥ =log X is normally distributed with parameters m and o.
Since Y is a non-decreasing function of X

PX<x) = HY<y)

Fx(x) = Fy(y)

or

Differentiating both sides

) = 1) 2

Therefore if
1) = —me O
o\/2m
Then
1
x) = e -m’ :, x=20 2.
f( (log x-m)‘/20’ > 63

xo+/2m

which is the probability density function of X having a log-normal distribution.
The corresponding cumulative distribution function is
x 25 2
F(x) = f e—(logu-m) 120° gy
o =

u

1
o\27m
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Making the substitution
logu—m
, _ logu=m
o

log x-m

F(x) = \71_2_1_r '[x o 6422/2 dz

which is the standard normal probability integral. The hazard rate is given by

sy = 1)
1—F(x)

The hazard rate of a log-normal distribution can be shown to increase to a
maximum value and then decrease to zero as x > 0. The log-normal distribution
does not seem to be physically suited to model component lifetimes. 1t does
however, seem to provide a reasonable fit for many component repair times.

The expression for the kth initial moment is easily derived as

mp(X) = E(X*) = E(eFY) = emkt TR (2.64)
The mean is
my = em+o? (2.65)

and the variance

0} = gm0 _ g2med’ (2.66)

The graphs of the probability density function, probability distribution function
and hazard rate are given in Fig. 2.3

Probability density Survivor function Hazard rate
function
10
0 t 0 t 0 t

Fig. 2.3 Characteristics of the log-normal distribution



30 System Reliability Modelling and Evaluation

4 Weibull Distribution
The Weibull distribution is defined by the following probability density function

f&x) = ap(px)*te @0, x>0 (2.67)
The survivor function
R(x) = fu ap(ou)*Le™ W% gy
x

= g (p® (2.68)
and therefore the hazard function
#(x) = ap(ox)*! (2.69)
The hazard rate increases with x for & > 1 and decreases for a < 1. The graphs
of the probability density, probability distribution and the hazard rate of a

Weibull distribution are given in Fig. 2.4. The kth moment of a Weibull
distribution can be calculated by

E(X*) = f **ap(px)* e P %gx
)
Substituting z = (px)*

1 oo
my, = —_kj ZRI% &2 gz
p 0

;JI; r (5 + 1) (2.70)

(e

where ['(2) is a gamma function defined by
@) = f 227 leFdz
0

When « is a positive integer
@) = (@—1)!
The mean value

- D +1/e)

5 (2.71)
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The second initial moment

_ T( +2/a)

0

and therefore variance

_ra+ 2/a) —(T(1 + 1/a))?

5 (2.72)
o
Probability density Survivor function Hazard rate
function
-1 a>1
a>1 a>1
a<l a=1

a<1 er! ol

0 t 0 t 0 t

Fig. 2.4 Characteristics of the Weibull distribution

The Weibull distribution is often used in connection with mechanical
components and has been used to model fatigue failure and the failure of ball
bearings. It has also been recently used to describe the repair time of electric
power generating units.

S Gamma distribution

" A non-negative continuous random variable X is said to be gamma distributed if

its probability density function is given by

plox)* ! 7P
fx) = —F— (2.73)
(o)
This density is a function of parameters p and a both of which are positive con-
stants. When « is an integer equal to a, then this distribution is also called the
special Erlangian distribution,

_ plex) e
(@a— 1)
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The probability distribution function is given by

* p(pu)®te™
F(X) =v[o —"—l_‘j(‘&j— du

1
Putting pu = z,du = ;dz

The function f[* z*™! e™% dz is called the incomplete gamma function. When o is

an integer  (special Erlangian distribution), it can be shown by integrating by
parts that

a-1 (px)k e Px

=1-
F(x) P o

The Laplace transform of a gamma function is given by

- _ p @
fts) = (p ﬂ)

Therefore the mean = (—1) F(s)[;-¢

e

The second initial moment = (—1)? f®(s),-,

Probability density Survivor function Hazard rate
function
1=
1=1
=1
10 prmr
a>1
0 t

Fig. 2.5 Characteristics of the gamma distribution
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«
2

0(2
2
p

==+

©

and the variance

E(X*) —(E(X))?

il

bN‘Q

Consequently the standard deviation is v/at/p and the coefficient of variation
is 1/x/a. Some typical cases of the gamma function are shown in Fig. 2.5. The
hazard rate is non-decreasing for &> 1 and is bounded by p. For 0 < <1, the
hazard rate is non-increasing and approaches zero as x = e,

The gamma distribution is very useful due to its simplicity and also because
it can be used to approximate many empirical distributions. A more detailed
treatment of its usefullness is given in Chapter 6 while discussing the device of
stages. A special case is when in Equation (2.73) p = % and a=Z where n is an
integer. This distribution is the x* (chi squared) distribution wit2h n degrees of
freedom.

Stochastic Processes

Consider the example of two transmission links again. Z(¢) defines the state of
this system at time z. There is a random variable associated with each value of ¢.
The family of random variables (Z(), t >0) is called a stochastic process. The
values assumed by the process are called the states of the system and the set of
all possible states is called the state space. The set of the possible values of the
indexing parameter is called the parameter space. The indexing parameter in the
above example is time but other kinds of indexing parameter such as space are
also possible. For example the number of fibres at a point on a yarn can be
considered a stochastic process with the length of the yarn as the parameter.
This book is, however, generally concerned with time dependent processes and
therefore time is the basic indexing parameter. The stochastic process is,
therefore, considered as a model of a system which develops in time according
to probabilistic laws.

Consider two identical and independent systems of two transmission links.
The state space for each system is defined as follows:

ZH=0 both links up
Zt) =1 one link up
Z(t)=2 no link up

Assume that at time zero both the links are up, and the systems are observed
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for twelve hours each. The state of each system as a function of time is shown
in Fig. 2.6. These two observations are called the two independent realizations
of the stochastic process. Realizations or sample paths could be obtained either
by observing identical and independent systems or they could be constructed by
appropriately using a table of random numbers or some equivalent randomizing
device. The realizations could differ from one another in detail and in fact these
differences are typical of random phenomenon. The idea of realizations often
helps to provide a better insight in certain reliability problems.

2(t)
2+
1t s S\/StEM 2
0 J ———— «System 1
L L s L L . L L s N

Fig. 2.6 Realizations of a stochastic process

The stochastic processes may be classified on the basis of the nature of the
state space and the parameter space. The following are the four possible
combinations:

1 Discrete state and parameter spaces

An example of this nature would be the number of successful missile flights
ina missile firing scheme. The indexing parameter would be the number of
missiles fired.

2 Discrete state space and continuous parameter space

Most of this book is concerned with stochastic processes of this kind. The
states of a system of components with time as the indexing parameter is an
example of this type of stochastic process.

3 Continuous state space and discrete parameter space

An example of this is the load on the electric power system observed every
hour. The solution as such requires more sophisticated tools. These problems
can, however, be often idealized by Category 1.
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4 Continuous state space and continuous parameter space
An example of this nature is the storage in a dam observed as a function of
time. Such problems can be idealized by Categories 1 or 2.

Probability Distributions

A stochastic process is defined for a set of points which may be either integer
coordinates (7 =0, 1,2, .. .) or an interval of real time (0< ¢ or - o <t < o).
At a particular point, the stochastic process is a simple random variable.
Assuming & arbitrary time points £, 1, £, . . . {7 <t,, <1, < ..., there are k
random variables Z(¢)), Z(tm),Z(tn). ... In the discrete time case these may
be denoted by Z;,Z,,Z,,....The stochastic process is completely determined
in principle if the joint distribution of ZnZy,, Z, .. .isknown for every k and
every choice of I, m and n. In practice, however, it is rarely possible to work
with these joint distributions and most of the information of interest can be
obtained from transition distribution functions. One property of basic interest
in the reliability evaluation of a system is the probability distribution of Z,,
for the discrete time case and Z(¢) in the continuous time case.

Consider first the discrete time case. The stochastic process is said to be
independent if

PZy=x1Zp=y,Z;=2,..) = P(Z,=x)

This means that the probability distribution of Z, is independent of the
present and the past history of the process. A slight weakening of this
condition leads to the well known class of stochastic processes called the
Markov process. In this case

KZ,=x|Zp=y, Z;=2,..) = PZn=x1Zp =)

That is, the probability distribution of Z, depends on the latest of the time
points and none prior to that. For this reason, the Markov process is sometimes
called memoryless. The Markov property essentially states that once the state
occupied at a time point is known, the previous history of the process is not
involved in determining the subsequent probability distributions. The Chapman—
Kolmogorov equation gives the conditional probability density function for this
process

PZ,=x|Z=2z) =

f_: PZ,,=y|Z;=2)P(Z,=x|Z,=y)dy (2.74)
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Equation (2.74) is for the continuous state space, discrete time case. The
corresponding equation for continuous state space and continuous time can be
written as

PZ(1,) <x1Z(t) =2) =

fw PZ(tn) <x1Z(tm) =y)dPZ(tm) <y 1Z(t) =2) (2.75)

Equations (2.74) and (2.75) in their general form are rarely used in practice.
They, however, convey the fundamental idea of recursively building the
conditional probability density function over the long time interval (/, n) from
those over the shorter time intervals (Z, m) and (m, n). If the conditional
probability density function depends only on the distance 7, - #; and not.on
t, and ) the stochastic process is called time homogenous.

The remainder of this chapter discusses the ‘discrete state space and discrete
time’ and ‘discrete state space and continuous time’ Markov processes. Most of
the reliability modelling falls into the latter case. It is, however, sometimes
convenient to idealize the continuous time by discrete time processes. The next
chapter discusses the stochastic processes from the point of view of the
frequency balance.

Markov Chains

This section considers a Markov process with discrete state space and discrete
parameter space. Equation (2.74) can be simplified when the state space is
discrete

PZ,=x|Zy=2) = ), PZn=%x1Zn =)PZm=yiZ;=2)
Yy

where x, ¥, z now denote the discrete states of the system. This equation

develops the conditional probability density function over the longer

interval from those of shorter interval. In practice, however, it is usual to work

with one step transition probabilities. In this case the Markov property states
PZ,=x\Zp 1 =9,Zn1=12,...) = PZy=x\Z,, =) (2.76)

If this one step transition probability is independent of n, i.e.

PZ,=x1Zp.1=)) = PZp=%1Zp_ =)

the process is time homogenous and transition probabilities are termed
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stationary. The one step stationary probabilities will be denoted by py» which is
the probability of transiting from state i to state j in one step. It is easy to see
that

Yy =1
7

The 7 step transition probability p,‘j") can be similarly defined as

pi(j") = P(Zm+n = ]lZm = l’)
The one step transition probabilities can be arranged in matrix form
P = (py)
This matrix is called the transition matrix and its Zjith entry is the probability
of transiting from state i to state j in one step. Each row sums to unity. A matrix
which has non-negative entries with each row summing to 1 is called a

stochastic matrix. Equation (2.75) can be written in terms of the single step
transition probabilities as follows

pP = ;pikpki .77

Arranged in matrix form
P® =pp=p? (2.78)

The matrix of two step transition probabilities can be found by squaring the
transition matrix. It can be easily seen that

P = pn 2.79)

In practice, interest is usually focussed on the probability distribution of Z,,
given the initial state of the system. The initial state of the system is defined by
an initial probability vector

p® = (po,p1,P2,--.)

The vector of state probabilities after n steps is found by

p” = pOpr (2.80)
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Written in the component form, this formula becomes

r” =X piy (2.81)

where

p](”) = The probability of being in state j after n steps.

Py = The probability of being in state k at the start.

and Pg’-) = The probability of being in state j in n steps starting in state k.

Example: A person is practising firing. If he misses, he becomes nervous and
the probability of the next shot being a hit reduces to %, but a hit bolsters his
confidence and the chance of the next shot being a hit increases to %. If the
initial shot is a hit, what is the probability of a hit on the fourth shot? Also
calculate this probability for the initial shot being a miss.

Designating the hit by 0 and miss by 1, the object is to find the probability
distribution for Z,. The state transition diagram is shown in Fig. 2.7.

p(3) = p(O)PS

3
From Equation (2.80) /\
\/

For the first shot being a hit

Fig. 2.7 State transition diagram

CER)
(3) 64 64
P? 1 o
2 n
R R

(8 2
64 64

That is the probability of a hit on the fourth shot, the first shot being a hit,
is 43/64. If, however, the initial shot is a miss
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43 21

. 64 64
=0 1

p © D, 1

2 32

I

21 11
32 32

The probability of a hit in this case is slightly less than the previous case.

It should be noted here that the (ij)th entry of P represents the probability
of being in the jth state after n steps, given the system started in state i. The
states of a discrete Markov chain can be classified into the following types.

If the states i and j can be reached from each other in a finite number of
steps, they are said to communicate. The set of states in which each pair of
states communicate and which once entered cannot be left is called a closed
communicating class. This is also called an ergodic set of states. On the other
hand, a set of states in which every state can be reached from every other state
is called a transient set. The discrete chain in which every state can be reached
from every other state is termed irreducible or ergodic. In other words the
states form a single closed communicating set. An ergodic chain in which each
state can be entered only at certain periodic intervals is called cyclic or periodic
chain. If a state exhibits this characteristic, then the state is termed periodic
or cyclic. A discrete Markov chain which is ergodic and a-periodic is called a
regular chain. The periodic chains and states are troublesome to deal with, but
fortunately reliability problems are most frequently described by regular chains.

Equilibrium Distribution

In the firing practice example
[0:6719 O~3281]
pP3 =

10-6563 0-3438

o [0-6667 0-3333
10-6665 0-3335

[0-6666 0-3334
10-6666 0-3334
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It can be seen that the entries of P'? seem to be approaching a limiting value. Is
this true in all cases? The following results are stated without proof.

1. In any Markov chain which is not cyclic the limit x; = 31_1)1106 p}")
exists.

2. In any a-periodic, irreducible Markov chain the above limit does not depend
on the initial probability distribution so that

x = lim pf™ = lim p}’

3. In 2 finite regular Markov chain, each row approaches a stationary probability
vector & = (@, , . . .). This is called the unique stationary probability vector
of the process and

aP = a (2.82)

This relationship is very useful for determining the limiting state probabilities
(also called steady state probabilities) of the process. In the firing practice
example

3 1
i 3
(@ on) . = (dg 1)
i 2
ie.
—3ap+tia; =0 (2.83)
jag—}a; = 0 (284)

These two equations are identical, therefore an equation of the following
form can be used

ata =1 (2.85)
From Equations (2.83) and (2.85)

o =%
and

o = %

It can be seen that these values could also be obtained by multiplying P, a
large number of times.
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Time Specific Behaviour

It has been shown that the n-step probability distribution of the discrete Markov
chain can be found from P? where P is the transition matrix. In determining
higher powers of P, the following matrix product is often useful

pr = pr-mpm (2.86)

The multiplication of large matrices is quite unwieldy using hand calculations
but easily accomplished when a digital computer is used. Though this method of
matrix multiplication is quite useful, the following technique can be used for
very large powers of P.

If the matrix P has NV distinct real eigenvalues, then it can be proved that
there exists a matrix § having an inverse S™' such that

SPS™' =D (2.87)
The matrix P is then said to be similar to the diagonal matrix D. In the
diagonal matrix all but the diagonal elements are zero. The diagonal elements
of D are the eigenvalues of P and can be determined from the following
relationship.
det(P—dl) =0 (2.88)
Equation (2.87) can be rearranged as

SP = DS (2.89)

The row s; of S is termed the ith left eigenvector associated with the eigenvalue
dy. Similarly rearranging (2.89)

Ps™! = §71p (2.90)

The jth column vector of ™! is termed the jth right eigenvector of S. It can be
seen from (2.87) that

SPSTISPS™! = §P*S7! = D?
and by induction
P* = §7'D"S (2.91)

The nth power of P can therefore be found from the nth power of the diagonal
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matrix which is easy. The difficult part, however, is to determine the eigenvalues
and the associated eigenvectors of P. Several numerical techniques are available
for determining these élements. In many practical problems, the basic matrix
multiplication technique is quite adequate. The matrix algebra approach to the
firing practice problem is as follows

i 1
P_
3 4
Therefore
34 %
@—dn = | .
3 2—d

The eigenvalues can now be found by equating the determinent to zero.

i-d 4
1 =0
3—d

G-DE-d) - =0

(NE

ie.

4d*—5d+1 =0

The roots of this equation give the eigenvalues of P

dy = 1
d, = %
Therefore
1 0
D =
0 i

The next step involves determining the left and right eigenvectors of P.
From Equation (2.89)
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ie 3500 + 4501 = So0
T dsetdsy = 0 (293)
Also
%Soo_%sm =0 (294
S0 tisy =0 (2.95)
and
s10tdsy =0 (2.96)

Equation (2.93) and (2.94) are identical, as are Equations (2.95) and (2.96).
There are now two equations and four unknowns and therefore the magnitudes
of the eigenvectors cannot be uniquely determined. Assuming

Soo = Su = 1

So1 = ‘7
s10 = —1
Therefore
I3
S =
-1 1

It should be noted that the elements of S, in general, are not determined
uniquely. Each row of S is determined up to a multiplicative constant. S~ can
be found by inverting §

3
Sl P
Using (291)
s —lfar o 1o}
P =
O 1 T ¢ I B R
_[arar iy
33y 4+3Ey
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Forn=3
FRRERE T e B
=34 it
3 21
g %

as previously found by the matrix multiplication approach. Similarly

2 1
oo P03
SR |

First Passage Times

One parameter of interest in many Markov Chain problems is the time to
encounter a state for the first time. This is called the first passage time. If this
state is an absorbing state or has been made an absorbing state, this is called the
time of absorption. In reliability engineering this concept is used to calculate the
mean time to first failure, MTTFF. As noted earlier, almost all the cases of
practical interest are regular chains, i.e. chains in which all the states communicate
and which are not cyclic. In these cases, the mean first passage times and their
variance can be obtained from the fundamental matrix Z defined as below

Z=[I—[P—Al]" 297

where
I is the identity matrix
P is the transition matrix
and A is the matrix each row of which is the limiting probability vector

a=(ay,0,....)
The mean first passage time matrix Tis given by
T=[U—-Z+ UZ,41D (2.98)

where
T  is the mean first passage time matrix such that Ei' represents the mean
time or mean number of steps to go from state i toj
U A unit matrix, i.e. with all entries 1
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Z 4 Matrix resulting from Z by setting off-diagonal elements equal to
2610

D Diagonal matrix such that d;; = /ey

The variance of the first passage times can also be explicitly determined.
Denoting the first passage time from state i toj by 7; 7 define the matrix W-

W = (E@h)
This matrix can be computed from the fundamental matrix by
W= TQZ;D—1)+2[ZT — UZT),] (2.99)

(Zf')d is a matrix obtained by setting the off-diagonal elements of ZT'
equal to zero.
The variance can now be obtained using Equation (2.13)
V(ty) = E(th) — (E(ty))?
= Wi T l_if‘

Example: A discrete Markov chain has the state transition diagram shown
below. Find the matrix of the mean first passage times.

The transition matrix for this state space diagram is

-]

i
o= e o
e = - )
N
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The vector a can be computed by

a3)

o~

i~

Q

S

Q

@

<
N L
Mmoo B oo
Bm B oo

|

_

Q

i

Q

N

o =4
0‘:=‘1§6
as:%
Therefore
P o &
a=l4 % %
PR
1 —1% 1%
I-[P—A] ={0 o
o & £

Z can be now determined from the inverse of the above matrix

(1 & %
z=l0o K &

o —% &

2 0 o
D =10 ¢ 0

L 0 laé
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Substituting into (2.98)

[ o1 g8l o o
T=]1 1 1jlo ¥ o
1 1 1flo o ¥
- 3
2 B 6
=l2 ¥ ¥
R

Alternative Approach to First Passage Times

The technique for calculating the mean and variance of first passage times for
regular Markov chains has been illustrated. It is also possible to calculate these
quantities by making state j an absorbing state and applying the theory of
absorbing chains. An absorbing chain is one which once entered cannot be left.
The behaviour of the stochastic process before once hitting state j will be the
same as that of the original process. The first passage time from state i to state
is now the time of absorption starting from state i in the new process. The basic
results for this absorbing chain can be obtained from the fundamental matrix N

N = [I‘Q]Al (2.100)

where

N = The fundamental matrix whose 7, denotes the mean number of
times the process is in state k before absorption, the process having
been started in state i.

Q = The matrix obtained by deleting the jth row and the jth column from
matrix P of transition probabilities.

The mean first passage time from state 7 to j is therefore
N-1
=Y m
k=1

The variance column vector is given by
/

/
W= [2N-Ii—i (2.101)
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where

Wi = The variance of the first passage time from state i to state j (the one
made into an absorbing state).

t = The column vector such that ;i is the mean first passage time from
itoj. o
t; = The column vector with 7; = 7%

It can be seen that this approach gives additional information about the mean
first passage time by providing the components spent in various states before
once hitting state j. This method can be illustrated by application to the previous
example. Determine the mean first passage times from states 1 and 2 to state 3.
Truncating the third column and row

=

3
E

D=

-Q=

The fundamental matrix NV can be found from its inverse

Starting in state 1, the process visits states 1 and 2, 4 and 2 times before first
hitting state 3. Therefore

I3=442=6
and

fs=8+% = 5333

It can be seen that these entries agree with the elements of T found
previously. If state 3 was considered to be the failed state of the system, then
MTTFF is 6 when state 1 is taken as the initial state.

Continuous Parameter Markov Chains

Many of the problems encountered in system reliability can be modelled using
continuous parameter Markov chains. The next chapter examines frequency
balancing techniques as an alternative way of looking at the stochastic process.

The Preliminaries 49

For u <v < t, the Markov property for a continuous parameter Markov chain
would be

PZ(D) = k|Z() =7, Z(w)=1) = PZ@®) =k|Z@©) =))
This property is basically of the form
PZ(+x)=jlZ(@)=1)

and is termed as the probability of transition from state i to state j during the
time interval ¢ to #+x. If this transition probability does not depend on the
initial time ¢ but only on the elapsed time x, then the process is said to be time
homogeneous. This book is primarily concerned with this class of process. The
transition probability will be denoted by

py(x) = Pt +x)=1Z(1) =)

for any x. The Chapman—Kolmogorov Equation (2.75) can now be written as
Piit +x) = 2 i) Prs(x) (2.102)
k

The transition probabilities must satisfy the following conditions
0<p;(x)<1 (2.103)
and

Y pyx) < 1 (2.104)
i

In Equation (2.104), if £ p;;(x) = 1 for all { and x, then the process is
J

called honest but if the inequality holds then there is non-zero probability of the
process escaping to infinity and such a process is termed dishonest. This book is
concerned only with honest processes. In the case of discrete parameter chains,
the basic elements are the one step transition probabilities. In a continuous
parameter case the equivalent elements are the limiting values, i.e. as x - 0. Define
the transition intensity or rate as

_ doylo)
dx x=0
i#j
A(Ax) —
- iy PuA0)—0
Ax—0 Ax

Aij
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ie.

pii(Ax) = N\;Ax +0(Ax) (2.105)
fori=j

A = dpyi(x)

Y dx x=0
' = lim pii(Ax) —1
Ax—>0 Ax

ie.

pi(Ax) = NyAx + 1 +0(Ax) (2.106)

Differentiating both sides of (2.104) for equality and setting x =0

Nt X A; =0
) i
ie.

== Z Nij
i#i

Therefore

pi(Ax) = 1= ), N\;Ax + 0(Ax) (2.107)

i

In Equation (2.105), p;; (Ax) represents the probability of transiting from
state i to state j during the interval of length Ax and this is equal to \;; Ax
i
plus a term which when divided by Ax tends to zero as Ax — 0. Equation (2.107)
can be interpreted in a similar manner. Equation (2.102) can now be written for
a small increment of time At as

é: Pir(t) Prj(AL)

p,-,-(! + Af)

= pifO)py(AD) + Y. pinlt) Prj(AD) (2.108)
kR#j

where
pi(t) = PZ() =J1Z(0) =)
Substituting from (2.105) and (2.106)

Pii(t + Af) = py((1 + Ny AD + X, pu(f) My At + 0(AD)
kR#j

RS
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A
pu(’*’ﬁ) pl[(’) = p; (t)>\” + 2 plk(t))\k] (Att)

and as At >0

pit) = % Pir(t) Aej

If P/ (t) denotes the row vector whose jth element is p; {t) i.e. the probability of
bemg in the jth state at time ¢ given that the process was initially in state i, then
the above equation can be written as

P{(1) = P(t)R (2.109)

where R is the transition rate matrix whose ijth element is )\ In a more general
form Equation (2.109) becomes

P'(r) = P(HR (2.110)
where P(z) has P (1) as its ({f)th element. The initial condition for (2.110) is

PO) = I

If, however the initial state of the system is defined by a probability
distribution in the form of a row vector p(0), the distribution at ¢ is given by
p(0) P. The system of equations (2.110) is termed as the system of forward
equations.

At this point it is interesting to probe a little into the significance of the
transition rates. Let X, : be a random variable defining the duration of state k
under the condition that the next transition will be to state j. In accordance
with Equation (2.7), the hazard rate is

Pix<Xpj<x+A < Xgj
b = tim XS St Axlx <Xu]
Ax—0 Ax
P[x <ij<x+Axlx <ij] = ¢k,~(x)Ax+0(Ax)

The left hand side can be interpreted as p ](Ax) if the process has been in
state k for time x. If the process is to be Markovian then ¢k {x) must be
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independent of x as the process is independent of the past. Therefore
pkj(Ax) = ¢,”-Ax + O(Ax)

Comparing with (2.105).
Nej = Oxj

That is the transition rate A;; is the hazard rate of the random variable defining
the duration of state k¥ under the condition of transiting to state j. The
exponential is the only distribution having a constant hazard rate and therefore
the random variables underlying the time homogenous Markov process must be
exponentially distributed.

Although time homogenous Markov Chains are the main interest in system
reliability, there is no additional difficulty in extending the above arguments
to transition rates which are functions of system time, i.e. when A;; is )\i](t).
The process, however, becomes non-Markovian when the transition rates are a
function of the state residence times. These processes are treated in Chapter 6.
In the case when the transition rates are functions of system time ¢ there exists
a family of matrices P(u,t), for t > u whose elements are

pij(,0) = PX@)=j1X@)=1)

In this case however the transition probability depends not only on (¢ - u)
but on u as well. The system of forward equations can now be written as

oP(u, 1) _

or P(u, t)R(t) (2.111)

This equation is called the Kolmogorov differential equation.

Transient Behaviour

Equation (2.110) is a system of linear differential equations with constant
coefficients. If the eigenvalues of R are distinct, the solution of Equation (2.110)
can be easily obtained in the form

P(r) = SD(1)S™! (2.112)
where
D(t) = The diagonal matrix whose (if)th element is exp { rit }, r; being the
ith eigenvalue of R
S = The matrix formed by right eigenvectors of R

i b
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S' = The matrix formed either by inverting S or from the left eigen-
value of R

The proof of Equation (2.112) may be found in books on differential equations.
In practice if ¢ is short, the solution may be found by the following technique.
P'(H) = P(HR
As At~ 0*
P(t+ Af) = P(¥) + P'(H)Ar
= P(t)(I + RAY)

It time 7 is divided into a very large number of equal intervals Az, so that Az is
very small (== 0), the above expression can be written as a recursive relationship

P(jA) = P(j—1 Al + RAt] (2.113)

It should be noted that (2.113) implies the approximation of a Markov
process in continuous time by a discrete time Markov process with steps
equal to At. The (§)th element of (/ + R At) is A;; Az, i.e. the probability of
transiting from state i to state j in one step of length Ar. Therefore [I + RAt]
is a one step transition probability matrix. It can also be seen that

P(jAD) = [I+RaAt)

which is the matrix multiplication technique in the discrete time case

Equilibrium Probability Distribution

As t - oo, the probability distribution of Z(¢) tends to an equilibrium distribution.
For all processes having a finite number of mutually communicating states, the
unique solution can be found by solving (NV-1) equations from

PR =0 (2.114)
and

Ypi=1 (2.115)

where p is a row vector whose ith element p. is the steady state probability of
being in the ith state. It can be proved that p; equals the expected value of the
proportion of a long realization spent in state i. In most cases the steady state
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probabilities are the only quantities of interest.
Example:  One of the processes commonly encountered in reliability studies

is the two state Markov process. The state transition diagram for this process is
shown below. !

Fig. 2.8 Two-state Markov process
The transition rate matrix
—A A
[T
Taking the Laplace of Equation (2.110)

sP(s) — P(0) = P(s)R

P(s) = PO)[s/ —R]™

For the two state process

s+ A —m]“

—u stu

P(s) = P(0) [

1 stu A
st | p s+

LS SHPCYe WYY SR S e
Atu Atu Aty Atu

P =
N h U SR S e VR
A+tu A+pu Atu Atpu
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The probability vector p(z) of the state probabilities can be obtained by

(Lo p1(8)) = (Po(0)P1(0))P(r)

Therefore
Po(t) = —E—(00(0) + P1(0)) + [ Po0) 2 — p,(0) | &Rt
Atu Atu Atu
M M -
= —+4 — A+t
e (po(O) >\+u) e (2.116)
and
Pi) = =+ [Pi@ =] et @i
Atu A+u )
Ast >
u
1) = =
lZg)(m) Do Atu
and
A
!tji(fo) == Atu

The steady state solution can also be obtained by the application of Equations
(2.114) and (2.115)

-A A
(Po Pl)[ ] =0
u

—u
Therefore
=Apotup; =0
and
Apo—up; = 0

One of these identical equations can be used with

Potp; =1
to give

Po = ——

(] Atu

and

by =T
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The probabilities p 0’ and p, are independent of the initial condition. This
seems to be intuitively true because after a long time many transitions between
0 and 1 would have taken place and therefore the effect of the initial condition
tends to diminish. The probabilities po and p; can be interpreted in two ways.
The first yinterpretation can be in terms of an average taken over a large number
of the realizations taken at a single point in time. If out of # realizations, the
process is n times in state 0 at a time ¢ remote from the time origin then

The second interpretation is in terms of the limiting proportion of time spent
in state O in a single long realization. The parameters A and u are the hazard rates
of exponential distributions and therefore they are the reciprocals of the mean
time spent in state O and state 1, i.e.

1
M Ex)
1
H TR

where X, and X are the random variables denoting durations of 0 and 1 state.

Considering 27 transitions in a single long realization of the stochastic
process, the process will be # times in state 0 and 7 times in state 1. Therefore,
the proportion of time spent in state 0 in 2n transitions is

Xoi+ X+ ... Xop

R(") =
T Mot Xt A Xo) + Ky F X+ Xyy)

Dividing both numerator and denominator by n

R(()n) = _—1Y0—_
Xo+ X,

As the number of transitions tends to be large, the average values tend to the
means (law of large numbers) and therefore

(n) _— E(XL
b E(Xe) + E(Xy)

n—>oo
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Il
=
5

Therefore p, is the limiting proportion of the time spent in state 0 in a single
long realization of the two state stochastic process. A similar interpretation
holds for state 1.

First Passage Times

Denote the first passage time from state 7 to state j by T}, i.e. this is the time
to enter state j for the first time starting in state i. If the state j is now made an
absorbing state, the behaviour of the new stochastic process and the original
process is the same until meeting j for the first time. pri' (2) is the probability
of being in state j, starting in state i for the new process then

PT;<1) = py(t)

The probability density function fij (#) can be found by differentiation
d d
fii@) = i (AT;<p) = ;Z;pii(t)

The Laplace transform can be obtained by
Fis) = sDy(s) (2.118)

The bar indicates a Laplace transform. After evaluating the right hand side, the
explicit density function can be obtained by inversion. The moments of the
first passage times can be found by referring to Equation (2.43).

The kth moment of the first passage time can be found by differentiating
Equation (2.43), & times

d*
T = V" 5 fisls) 3 (2.119)

If the absorbing state is the failed state, then the mean first passage time
represents the MTTFF. The above procedure can be conveniently carried out in
the matrix form. Let the states 1 toJ be the elements of subset X and J+1 to
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N be the elements of X, It is required to find the first passage time to the
subset X~. The matrix of transition rates can now be partitioned as follows

[Ru Rn]
R =

Ry Ry
where

Ry, is aJ x J matrix

Ry isaJ x (N —J) matrix

R,y isa (N —J) x J matrix
Ry isa (N —J) x (N —J) matrix

and

The states jeX™ are now absorbing states and therefore R o and R, are set to
zero. Let p(¢) be the vector of state probabilities for an initial starting condition.

This vector can be expressed as (p () p_(¢)) where p_(¢) and p_(¢) are the vectors
containing the states ieX " and ieX™ respectively. The forward differential
equation now becomes

d R11 R
2 P+Op-@) = (p.()p-()) [ }
0 0

Therefore

pi(t) = pADR
and

pUD) = PRy

Taking the Laplace transforms
§P.(5) = p4(0) = )Ry,
sp(s) = Pu(s)R12

p(0) = 0 as the process started in i € X *. These equations can be rearranged
as

i

B.(s)
and

pO)s/ =Ry 1™ (2.120)

sp-(s) = pO)sI—Ru)"'Ry, 2.121)

The probability of being in subset X~ at time # is p _(¢) Upg where Uy isa
unit vector of dimension N-k. From Equation (2.118) it can be seen that the
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Laplace transform of the probability density function of the first passage time is

f(s) = sp(s)Un-k

p(0)(sT —R11) 'RixUn -

I

Since the rows of the transition rate matrix sum to zero

R Uy = Ru U,

" Therefore

F6) = pO)[sI — Ry ) 'R1y Uy, (2.122)

The rth initial moment can be found by Equation (2.119)

T® = k! p (0)(—R1) " U, (2.123)
The mean is
T=7TY = p(0)(—Ryu)"U, (2.124)

If the process started in the first state

T=@000...0-R"U

If X~ represents the failed condition 7, then T is the MTTFF. It should be
realized that Equation (2.124) can be derived from the theory of discrete time
Markov chains by assuming that each step of the chain is Az = 0. The matrix of
one step transition probabilities becomes {7 + R At] and by truncating the
abosrbing states 0 = [/ + R | At] and therefore the fundamental matrix

N = (-0 = 4 [Rul”

This matrix gives the number of steps spent in the different states. The time
spent in the different states can be obtained by multiplying by At i.e. the
step length. From this point on it is easy to see that

T = p0)(—Rn)™" Uy

The first passage time represents the time of entering a state or a set of
states for the first time, starting in a particular state. It is sometimes necessary,
however, to find the mean time spent in subset X * or X~ For example, if
Xt andx represent the up and down states respectively, these time
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parameters represent the mean up time and the mean down time. In order to
calculate these quantities, it is necessary to know the probabilities of beginning
X" in the various states, which are its elements. Denoting the steady state
probabilities of being in various states of the original process by p; the
probability of beginning X' *in state jis

LR
(0) = S —
p;(0) 5 T pg
JEX* iex™
In vector form
P-Ry;
p+(0) = ————
© P-Rxn U,

In the steady state
p+Rll +p-R21 =0
Therefore

—p+Ru _ —P.Ru
P+RuUr  piRpUy,

p4(0) =

Substituting in (2.124), the mean stay in X is

= —p.Ru(—Ry)'U, _ .Uy
P+R1p Uy P+R Uy
= Zm/ZPfZ Ay
iex* iExtjex-
= Yo/ ShT N @.125)
iext i€EX” jext

In a similar manner the mean duration in state X~

T Zpi/zpiz)\ij
i€x- i€X" jex*

= Yol Y Y N (2.126)

i€X” iEX* jex-

I
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The mean cycle time, i.e. the time between two successive encounters of
+
X or X

T=T'+T"

1/ N TIDIRY
iExX" jex*

1/ Yo 2N (2.127)
iex* jeEx-

Il

In the next chapter these relationships will be derived from the frequency
balancing technique.

Exercises

1. X is a non-negative continuous random variable such that conditional on X
being greater than a fixed value ¢ > 0, the probability density function of
X -t is the same as the unconditional probability density function of X.
Prove that X has a negative exponential probability density function.

2. Assume that X is normally distributed with m = 0.4 and 0=4, find

(a) P(X > 1+5)
(b) P(X <0-5)
©P(3<X<1)

3. Suppose that X;,i=1,2, ... n are independent random variables, gamma
distributed with parameters ;, p. Prove that the random variable
n n
Z X; is also gamma distributed with parameters = a;and p. This is
i=1 i=1
called the reproductive property of gamma distribution.

4. Find the 1,2, 3 and 4 step transition probability matrix for the follow single

step transition matrix. Does it exhibit any special characteristic?

]
I
o O M

1

2
0
0



62 System Reliability Modelling and Evaluation

S.

The state transition diagram of a continuous time Markov chain is given

below. The states 1 and 2 are working states and state 3 is failed state.

Calculate

(a) The availability, i.e. the steady state probability of being in the working
state

(b) MTTFF

(c) Mean cycle time
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