CHAPTER 4
System Reliability

Introduction

A system is a set of components arranged to accomplish a purpose or purposes
under a given set of conditions. This chapter is concerned with determining the
reliability characteristics of the system from the statistical information available
on the failure and repair cycles of the components. Non-maintained systems are
treated extensively in the literature and therefore the attention in this book is
directed towards maintainable systems. In these systems, restorative action is
initiated immediately after the failure and reliability modelling and evaluation
is generally more complicated than in non-maintained cases. The theory and
procedure is, however, quite general and can be equally applied to non-
maintainable systems.

Numerical values of reliability measures can be obtained either through
simulation or by solving mathematical models. The simulation approach is
discussed in Chapter 7. This chapter describes various mathematical approaches
to system reliability evaluation. The essential theory has already been outlined
in the previous two chapters. Different approaches to system representation
and solution are described. The following preliminary analysis is basic to all the
approaches.

Definition and Description of the System and its Requirements

The first step in developing a reliability model is to define and describe the system
and its requirements. The system must be categorized into major subsystems
and the function of each subsystem and the interface between them defined. It
is helpful to prepare a functional diagram showing the interaction of the various
subsystems. A statement of the function of each subsystem and component
should also be prepared. This type of information is easy to obtain for existing
systems or systems where the design is in the final stage. At the early stages of a
project, a good description of the system may not exist and the reliability
engineer may have to come up with a reasonable description of the system

from the study reports, development plans and specifications. Discussions with
other personnel engaged on the project are very helpful. The system can be
usually broken down into convenient blocks and most often the systems are
designed on that basis. In terms of developing a model for the reliability
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calculations, it may sometimes be preferable to group the components from
one natural subsystem into another to create independent subsystems as this
facilitates the reliability calculations.

Failure Modes and Effects Analysis

The analysis has to start at the level at which the information is available or can
be made available. The term component is used in a general sense as it may in
itself be a subsystem. For example, in generating capacity reliability analysis, a
generating unit is regarded as a component whereas it is in itself a complex of
components. The failure modes of the components should be investigated. The
different modes are recognized from the different effects which they may have
on the system. Some components may have just one mode of failure whereas
others may have several. A relay or a circuit breaker may, for example, fail in an
open or closed position. These modes generally have different effects on the
system. A diode may for example fail as open circuited or short circuited and
these failures develop into different system contingencies. After the different
modes have been identified, their effects on the system should be studied. To
assure complete systematic coverage of the effects of various failure modes, it
is useful to employ some type of recording forms. It is again stressed that the
identification of the failure modes is based on the different effects which these
modes may have on the system. After the first analysis has been performed it
may turn out that some of the effects, different though they may be, can be
regarded as identical from the point of view of reliability analysis. It may
therefore be possible to reduce the modes of failure. It is advisable to keep the
failure modes to a minimum both from the point of view of reducing the
complexity of the problem as well as from the point of view of limited
statistical data. It is also sometimes possible to regard the different failure modes
as independent without introducing any significant error. In such a case the
component can be represented by a number of independent binary components
equal to the failure modes.

The detailed form of above qualitative analysis is commonly referred to as
FMEA (Failure Mode Effects Analysis). In certain programs which involve the
limited production of complex and costly new hardware, it may not be
possible to go much beyond this point and certain conclusions regarding design
weaknesses may be derived from this type of analysis. Criticality analysis may
be further added by ranking the critical failure mode effects according to
the probability of occurrence. This is then called FMECA (Failure Mode, Effects
and Criticality Analysis). This has been used extensively by NASA and other
defence industries and is now finding its way into the analysis of commercial
systems.

The purpose of the above two steps is to deepen systematically the
understanding of the system in terms of the various component failure
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contingencies. In some cases the system may be simple or so well known that it
may be possible to by-pass this analysis because it is intuitively known to the
reliability engineer. Assuming that the above analysis has been performed or the
system is intuitively well understood, the techniques for mathematically deriving
the reliability measures can be broadly classified as:

i. state space approach
ii. decomposition using conditional probability approach
iii. network method

These techniques are now described in detail.

State Space Approach

A component may assume various states depending upon its failure and
restorative modes. The system state describes the states of the components
and the environment in which the system is operating. The set of all the
possible states of the system is called the state space or event space. If the
environment can exist in m states and the n components of the system are
independent in each environment state, then the state space consists of gntm
states. The number of states is, however, modified because of the dependency
restrictions. The state space approach involves the following steps:

i. Enumerate all possible system states,

ii. Determine the interstate transition rates. If a diagram is drawn showing the
various states and the interstate transition rates, it is cailed the state
transition diagram.

iii. If the components are independent, the system state probabilities may be
found from the component state probabilities by the product rule. In case
of dependent failures, the system equations are formed and solved for the
state probabilities.

iv. The states are then grouped into subsets depending upon the requirements
of the analysis. In most cases, measures are required only for success or
failure but in some cases the indices may be computed for a graded mode of
operation. After the grouping has been done, the subset probabilities,
frequencies, cycle time and mean duration can be computed by the
application of the formulae given in Chapter 3.

This approach is conceptually general and flexible and makes it possible to
take into account various dependent failures. In large systems, especially involving
dependent failures, it may be difficult to apply this technique. The methods for
overcoming these difficuities are discussed in the next chapter. This approach
is illustrated with the help of the following simple example.
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System Description

The system consists of line 1 and line 2 supplying electric power to bus C from
buses 4 and B. The supply at points A and B is considered to be perfectly
reliable. Line 1 supplies 75% of the total power and line 2 supplies the
remaining 25%. The lines can exist either in the ‘up’ or the ‘down’ state and the
repair facilities are sufficient to perform repair on both the lines at the same
time. The system is considered failed when it is supplying less than 75% of the
power.

State Transition Diagram

In evolving the state transition diagram it is usually convenient to start from the
state in which all the components are in a working condition. This condition is
represented by state 1 in Fig. 4.1. The states to which the system can transit from
state 1 are determined by the component transition modes and either of the

lines can fail giving state 2 or 3. If the up times of both the lines are exponentially
distributed with mean up times T, and T ,» the transition rates from state 1 to
states 2 or 3 are constant and given by

1 1
A==, A, =
1 2 T2

This is shown in step 1.

Consider states 2 and 3 where one component is failed and the other is
working. The system can change state either because of the failure of the working
component or because of the repair of the failed component. If component 1
were to fail in state 2, the resulting state description would be (1D,2D) as shown
by state 4 in step 2 in Fig. 4.1, Since the failure rate 7\l is constant for
component number 1, it is unaffected by the time of residence in state 1 or
state 2. If, however, the distribution were non-exponential, the transition rate
would be dependent on times of residence and such a simple representation is
not possible. This will be treated in detail in Chapter 6. Now considering state 3,
if component 2 fails the system will transit to state 4 already generated but if
component 1 is repaired, the system goes back to state 1. This is shown in
step 2.

In state 4, both the components are down. Since both the components
can be repaired independently, the resulting diagram is shown in step 3. The
state transition diagram for this system is simple and could have been drawn in
a straight-forward manner without going through the above procedure. The
purpose of the above discussion is, however, to illustrate the concept of
evolving the state transition diagram by examining the possible transition
modes of each component in a particular system state. It should be realized that
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it is not possible to draw a state transition diagram for relatively large systems.
The above procedure is, however, readily programmable on the computer. The
states in the computer program are represented by binary numbers, usually 0
standing for working components and 1 for failed ones. Special codes are
employed for representing other modes (i.e. stand-by). The computer program
usually evolves the state transition matrix directly and further manipulations
are done using this matrix.
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Fig. 4.1 Evolution of the state transition diagram.

State Probabilities

Both the lines are independent and the state probabilities can therefore be

found by the simple product rule. It should be noted from Fig. 4.1 that when

all the components are independent, each component can exert all its

transition modes without any restriction from the other components or the
environment. If in any system state, one or more of the transition modes of a
component are suppressed, the components are no longer independent. Denoting
the probabilities of the ith component being in the up or down state by pl-u(t)
and p; (¢), these values for the initial condition pl-u(O) =1,p;;(0) =0 can be
written from the results of the first chapter
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The steady state values are

Piu = A
Nty
Pia = N+

The state probabilities are
pl([) = plu(t)phz(t)
p2(t) = P1.(£)P24(1)

p3(8) = P1a(t)P2u(?)
and

pa(?)

P14(t) P2a(0)

Reliability Measures

Since the system is considered failed if less than 75% of the total electric power
is transferred, the subset X7 of failed states is

X" = {3,4}
and the disjoint subset X is
X™ = {1,2}

The various measures can now be calculated

Time specific domain
The probability of the system being in the failed state at time ¢
= The time specific availability of X* = 4.(¢)

= Y pdD)

iex”
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Steady State Analysis

The steady state measures can be obtained either by finding the limiting values
of the time specific results or else by the direct application of the steady state
formula. The latter approach is usually easier.
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System unavailability

The availability of X™*

= P
A+
1t should be noted that this result could also have been obtained either from
Equation (4.1) by letting ¢ = < or from Equation (4.2) as T - c°. The steady
state unavailability can be interpreted, as mentioned before, either as the
probability of being in the failed state at a point very remote from time of
origin or as the limiting proportion of interval (0,T) spent in the failed state,
when T is very large. Frequency of encountering the failed state
= (py +p2 )Ny
= P11
My
Mt N
= PiaM
ALty
Mt

This illustrates the frequency balance between the failed and working system
state. The frequency could also be found from Equation (4.3)
by letting T oo, in F,(0, T)/T
Mean cycle Time
1/Frequency
Bt M
Ay

Mean duration of the down state -
= Mean cycle time x unavailability
1

M1

The following section examines some basic configurations which occur quite
commonly as systems or subsystems.
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Series System

Components are considered to be in series when the failure of any one of the
components causes system failure. This is shown in Fig. 4.2 where the failure of
a component is equivalent to the removal of the corresponding block. It should
be noted that the actual configuration of the components may or may not be

in series, it is the effect of the failure of each component that is important. There
are now two cases, firstly when all the components are independent and secondly

et - n . oueut

Fig. 4.2 Reliability diagram of 7 components in series

when after the system failure no further failure is possible so that there can be
only one component in the failed state at any time. These two cases are
considered separately.

Independent Case

Since the components are independent, the state probabilities can be derived
from the component probabilities by the product rule. The state space will
consist of n+1 subsets of states having 0,1,...,n components in the failed state.
The failure of even a single component causes system failure and therefore

all the states except the one in which all the components are working represent
system failure. It is therefore necessary to determine the measures for subset X +
such that

X~ = {state where all components are up}

X* = {all states except the one defined above}
A1) =1—4.()
1= p1u@p2u(® . .. Pru(?)

I

It can be seen that the above expression will involve exponential terms and the
fractional duration and the interval frequency of the system failed state can be
readily found by the application of appropriate formulae. In maintainable
systems the steady state values are usually of primary importance and can be
obtained from the following explicit formulae for this case.
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System Unavailability
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It should be noted that in the above expression the first term is the mean cycle
time and the second term can be easily seen to be the mean up time. The
mean down time is therefore represented as the difference of mean cycle time
and the mean up time. For a two unit series system the expression for mean
down time reduces to

1 )00t )

e 1
(7\1 +22) M1z

_ Mita Tl ¥ MM
g+ A

_MntntMnn (4.4)
XA,

where r, and r, are the mean down times for components 1 and 2.
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Dependent Failure

In many series systems it is safe to assume that once the system has failed,
further failures will not occur. In such a case the state transition diagram is
shown in Fig. 4.3. State O corresponds to the working state when all components
are up. State i,i=1,...,n, corresponds to the ith component down. Once the
system enters any of these states it can return only to the working state O
because further failures are impossible. The transient solution can be obtained
by solving the state differential equations. The steady state solution proceeds in
the following manner. The frequency balance equations can be written as
follows.

o]
M All up Hn
/ N X‘
1] 2T .
1DN 2 DN n DN

n n
Po 2 M=) Pilk @.5)
j=1 i=1
piti = pok; (4.6)
From Equation (4.6)
A
Di = —Po
H;

Substituting these values in equation

n
Pot ) pi=1
=1

1
Po = Z
where n
Z=1+ 3 =+
i=1 M
and _ )\_‘
Di Z
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System unavailability
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Referring to Equation (4.4), in high reliability component systems, the term
A1 X271 72 can be neglected and therefore in such cases the mean down time is
approximately the same in both the cases.

Series System with Spare

Consider the special case of a series system with a spare. The example chosen
consists of a bank of three single phase transformers. As soon as a transformer
fails, the entire bank is shut down until the failed unit has been replaced by the
spare. The repair facilities are assumed to be unrestricted, i.e. as soon as the
transformer fails, the repair is started irrespective of the fact that another unit
may also be undergoing repair. The down time consists of two phases, the

= T /2 y @7)
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repair time and the change out or the re-installation period. The following
symbols are used:

A failure rate of a single phase transformer
K = repair rate
Yy installation rate

The up time and the down times are assumed to be exponentially distributed.
Reliability modelling of this system when the down times are not exponentially
distributed is discussed in Chapter 6. The state transition diagram is shown in
Fig. 4.4. The subsets X+, X representing the system failed and working states
can be defined as follows:

X" = {345}

x = li2}
State 2 State 1
bank UP LI bank UP
spare 0 spare 1
Sh NS -\ S LA

""""""""" DN

State 4 o State 3 .| States
bank DN 2u bank DN u | bank DN
spare O spare 1 spare 2

Fig. 4.4 The state transition diagram of a bank of three single
phase transformers with one spare

The state frequency balance equations can be written as

3Ny = wps +ps

Gr+wp, = 3

(r +wps = 3\py +2ups
2ups = 3\p,
YWPs = up3

Any four out of the above five equations together with the following
equation can be used to obtain the steady state availabilities.
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The various probabilities obtained by solving these equations are:

2922 + 29 GA+ )

pL = 7
where
Z = 99 + 2ulGA+ G+ Ny + Wl
6 u ~ My + )
P2 = 7 D3 -z
%y MA@+ )
Ds Z Ps Y
N2y + 6Xuy (BN + wy + 6N 23N + 1)

PpN = P3 tpatps = 7

and
_ 270+ 2P G ) + 60y
z

pup = P1+p2

The frequency of encountering the subset X * of the failed states can be
found as:

1t is more convenient here to use the first relationship

fur = fpn = 3Mpy +p2)

= 3\yr
_ 32yt uR + 2y (3N + ) + My )
z
The mean cycle time
= 1/fpn
VA

T QYR + 292 (3N + ) + 6M )

The mean down time
(M.C.T.) x (Unavailability)

Ny + 6Auy(3N + ) + M (BN + 7)
3Ny 2 + 2y BN+ ) + 61y )

il
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Parallel Systems

When there are a number of components each one of them partially or
completely serving the purpose, these components are said to be in parallel.
When the components are simultaneously performing the same furiction so

that the system will be fully available if at least one equipment is operating, it
is said to be a parallel redundant configuration. In the example of two
transmission lines of 25% and 75% of the total capacity requirements, this is

a parallel but not a redundant arrangement. The following section deals with
parallel redundant configurations. If the failure and repair rates of the equipment
can be regarded as independent of the environment, the components. canbe usually
regarded as independent. The probability of the system being in the down state
at time ¢, i.e. the unavailability, can be found by the product rule

U(t) = p1a(Op2a(®) - . . Pral®)

This product will be a function of exponential terms which are easily
integrable. The fractional duration or the average down time in the interval
(0,t) can be therefore easily determined. For determining the interval frequency,
the states in X~ from which the system can transit to X ina single transition
have to be identified. These states are called the boundary states and it is these

‘'states which contribute to interval frequency, the transitions from other states

of X~ remaining within the subset. In the present example, these states are
obviously those in which only one component is in the working state. The
number of such states is obviously 7. The time specific frequency of encountering
the down state is

fon® = 3. pu@NTT pia() |
2
and

t

fon(0,0) = || fonterax
The steady state results which are of main interest can be, however, more readily
obtained in explicit form

N
Nt

U = Unavailability = In]
i=1

It has been explained previously that in the steady state condition, there is a
frequency equilibrium between X~ and Xt The frequency can therefore be
found for either of these two subsets. In practice, the one which is easiest to
compute. In this case it is obvious that the easiest way is to find the frequency
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of encountering the up state since there is only one state in the down state. o )
Therefore
f fi II A i | . 2
= = “ i —1
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The same result is derived for the sake of completeness as encounters from X~ . —1 !
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Fig. 4.5 The m/n Representation
n n
=Y w1l vja ‘ If the components are independent, the reliability measures can be easily
=1 i=1 |

derived. Assuming identical failure and repair rates A and u
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For calculating the frequency of encountering the down state, the boundary

which is the same as derived above. The mean cycle time to encounter to the
down state is the reciprocal of the frequency. The mean down time

= Ulfon : states in X~ are those in which 7 units are working and n-m are failed. Any
: \‘ further component failure results in system failure. The frequency is therefore

= z :

2 n ’um A

i=1 _

= A N
: Jon (m) O+a)" ma
. :
The m/n Parallel System

The mean cycle time can be found as a reciprocal of Jpy and the mean down
In some systems of identical parallel components, m out of n components may ) time
be required for successful operation. These are termed m/n parallel systems and

can be represented as shown in Fig. 4.5. = Ulfon
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Decomposition Using the Conditional Probability- Approach

This method consists of decomposing a complex system into simple subsystems
by the successive application of the conditional probability theorem. The idea is
to calculate the reliability measures of the simpler subsystems and to combine
these results to obtain the values for the system. The selection of the component
or subsystem which is the key component or subsystem is therefore important.
If this is not judiciously chosen, the final results will still be the same but the
computation could be far more difficult. This method can be used to simplify
both the state space as well as the network approach. Denoting the key
component by X and representing the probability of its being up or down

by P(X) and P(X) respectively

P = Probability of system success o
= P(System success |X).P(X) + P(System success |X)P(X) (4.8)
and
Pf = Probability of system failure

P(System failure | X)P(X) + P(System failure | X)P(X)

The formula for calculating the frequency of encountering the down state (or
any other state or subset of states) has been derived by the authors in the
analysis of interconnected electric power systems and is explained below. The
frequency of encountering the failed state of the system consists of the
following components:

i. the frequency of encountering the failed state, the component X being up,
denoted by f,
ii. the frequency of encountering the failed state, the component X being
down, denoted by £,
ifi. the frequency of encountering the failed state as a result of the failure of
component X, denoted by f,

The frequency being the expectation of the state encounter rate

ff = The frequency of encountering the system failure
5t 4, -
fA(System failure | X)P(X) + f(System failure| X)P(X) + I

The expression for [, is now derived. Let the state space of the system be
denoted by Y and ¥, given that X is up or down respectively. Let the subsets
of the failed and working states be denoted by superscripts + and - respectively.
Y, " thus denotes the set of working states given X is up and Y, * denotes the set
of failed states given that X is down. Statesin Y_ and Y, having the same
configuration of components, excluding X, are regarded as identical. It is assumed
that the system cannot transit from the failed state to a working state by the
failure of X. Therefore a state which is a member of Yo+ cannot be a member of

1
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Y, ". The intersection of subsets ¥~ and Y, t represents the states in which the

system is working if X is up but failed if X is down. Denoting these states by set
S

fa =Y, P(Statei|X)P(X)\,
i€s
where
A, = The failure rate of X.

If the component X is independent of the rest of the system, then the sets
Y, and Y, are equal and

P(State i|X) = P(State i|X)
Under this condition

Y, P(StateilX)— Y. P(StateilX)
€YY iEYY

Y. P(State i|X)
es

i

P(System failure | X') — P(System failure | X)

The formula for system failure frequency, therefore, becomes
f; = f(System failure | X) P(X) + f(System failure | X)P(X)
+ (P(System failure | X) — P(System failure | X)) P(X) A, 4.9

The application of this approach in simplifying reliability block diagrams is
shown later in the chapter; the application in a state space approach is shown in
the following example, which is rather an oversimplification of interconnected
power systems.

Example 4.1:  The electric power to an area is supplied from Station A where’
two identical generating units 1 and 2 are installed. A generating unit 3 is
installed at a remote place and is supplying power to the same area through a
transmission line. The failure and repair rates of the generating units are assumed
to be A and u respectively. :

The failure and repair rate of the transmission line are A,. and My The system
is classified as failed when no supply is available at all.
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Supply

3 Transmission line

Generating station 8

Fig. 4.6 Functional diagram of the generation scheme

Assuming the transmission line in the up state, the three units can be assumed
as parallel, therefore
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A
[ (System failure|TL up) = (———) 3u

Assuming the transmission line in the down state, the system is composed of
only two parallel units, and therefore
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The same result can be obtained by drawing the state space diagram and
making the calculations. This exercise is left to the reader for verification.

Network Approach

The state space approach is general and flexible but it becomes cumbersome
when the number of states becomes large. The network approach when
applicable usually provides a shorter route to solution. The network approach is
usually not suitable when dependent failures or repairs are involved. Such
failures occur in standby systems, interactive systems or systems whose failure
and repair rates respond to a fluctuating common environment. It-is not
necessary to assume the event independence in this approach, but dependent
events can greatly increase the algebra of computations and sometimes the
solution may become impossible. At this point it is necessary to recognize the
difference between two types of block diagrams.

Physical or Block Schematic Diagram

‘This diagram describes the actual connections between the components. Each

block is a component and the diagram shows the manner in which they are
actually connected.

Logic Diagram or Reliability Block Diagram

This diagram describes logical connections between components. Each block

is a component which is removed when the component fails and replaced when
it is repaired. The connections between the blocks. describe the success or
failure of the system as a function of the states of the component.

In the block schematic diagram, a component is not repeated because it
represents the physical reality but in the reliability block diagram the block may
be repeated. It is generally easy to construct the physical diagram as it follows
from the physical layout. The reliability block diagram is usually difficult to
prepare and in some cases a unique diagram may not exist. In the cases of
information or power flow systems, it may be easy to construct a reliability
block diagram. In many cases it may be difficult to do so. It requires a thorough
understanding of the system and it is advisable to perform FMEA before
constructing this block diagram. In the methods described below, the following
assumptions are utilized.

1. the system is composed of independent components or subsystems. When the
component reliabilities are high, this assumption enables approximate results
to be obtained for non-independent units. Approximate formulae are also
available for the reliability of a parallel network when the components
respond to a two state fluctuating environment
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2. each component or subsystem can be represented by a two state device, and
the system success or failure can be expressed in terms of these two state
devices

3. when all the components are working, the system is successful and when
all the components are failed, the system is failed

4. when a group of components is working and the system is successful, the
restoration of a failed component will not cause system failure

5. when a group of components is failed and the system is failed, the failure
of any additional component will not restore the system to a successful
state.

As the components are assumed to be independent it is not necessary to assume
any particular distribution form for the up and down times in order to obtain
steady state results. This will be clarified further in Chapter 6. It is only
necessary to know the mean up and down times. The recriprocals of the mean
up times and mean down times are failure and repair rates respectively. Assuming
that the reliability block diagram exists, there are two main methods, the
reliability diagram reduction method and a method based on manipulating the
cut sets or tie sets. Both of these methods will now be described in detail.

Network Reduction Procedure )
This method proceeds by the manipulation of the basic network structures:

i. series structures
ii. parallel structures
iii. m/n structures when the n blocks originate from a common node

The method sequentially reduces the simple structures to equivalent units until
the whole network reduces to a single unit. The necessity of assuming subsystem
independence will be made clear in the next chapter while discussing the
validity of equivalent transition rates in the context of subsystem reduction.
Assuming that no’subsystem is represenied by more than one block, the
procedure is as follows:

1. replace all series blocks by an equivalent block. In this case the following
measures of the equivalent block can be easily obtained

Availability = [T p;,
Vi

Failure rate

N

Vi
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2. in the resultant diagram replace the parallel and m/n substructures by
equivalent blocks. In the parallet block diagrams it is convenient to determine
the following measures of the equivalent block

Unavailability = TT piq
Vi

Repairrate =)
Vi

The above steps are repeated until the whole network reduces to an equivalent
block. If at any stage the network does not reduce any further, then the
decomposition approach may be employed to generate simpler networks. In
applying the decomposition approach to networks, the condition that the key
component is good is equivalent to replacing this component by a short circuit
and the condition that this component is down is equivalent to replacing it by
an open circuit. This approach is illustrated by application to the system shown
in Fig. 4.6. The reliability block diagram follows directly from the system
topology and is shown in Fig. 4.7.

Input o J 2 l
‘oc

Fig. 4.7 Reliability block diagram of the system shown in Fig. 4.6

© Qutput

In this diagram, blocks 3 and X are in series. The equivalent block 3X has the
following measures

Paxa = | — P3uPsu
7\3x = )\3 +>\x

Components 1, 2 and 3X are now in parallel, therefore

Unavailability = p1ap2aPsxa = P1aP2a —P1aP2dP3ulxu



112 System Reliability Modelling and Evaluation

= p1aP2a —P1aP2a(l —P3d)Pxu

= Pszd(l ~Pxu) t PraP2dP3aPxu
= P1aP2aPxd T P1aP2aP3aPxu
\(A\f A +(>\\3 U

7\+u} Ay oy Mhu} e iy

This result is the same as obtained in Example 4.1. The repair rate of the
block 3X can be derived from
>\3x

T = Use = 1pap
7\3:4 +M3x % 3uF xu

}\3x
M3x = T —A
1 T P3uPxu >

= )\SxPSupxu/(l - p3upxu)

The frequency of system failure

= System Unavailability Y u
: Vi

= P1aP2a(1 = Paubluu) (1 + 12 + f135)
2 3
-~ ANV A (A M
Mol Nt Whe) At
+P1aP2a(A3 + N )P3uPau
2 3
IR N B VY (8 N
At u) A tpe \NHp) Aty
2
—— O\_|_ x)LL
At+u PN TR T

_ (A 3 3up.x_+ AV un,
Y IS P R

R T
P TY I N S T WA T

which is the same as derived in Example 4.1. It should be noted that though the
deriving of explicit expressions could be a formidable task, the numerical results
even for large systems can be obtained easily using a calculator or a computer.
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Example 4.2:  The reliability block diagram of a'system is shown in Fig. 4.8.
The mean up times and down times of the various blocks are:

B Yr
20 Hr

n

MUT, = MUT, = MUT, = MUT, = MUT,
MDT, = MDT, = MDT, = MDT, = MDT,

]
]
]

Assuming that all components are statistically independent, calculate the
reliability measures for continuity between s and /.

Fig. 4.8 Reliability block diagram for Example 4.2

1t is obvious that no simple series or parallel paths exist in this reliability
structure. Applying the principle of decomposition, the block diagram can be
split into simple series and parallel configurations as shown in Fig. 4.9 in the
form of a tree. Referring to Formulae (4.8) and (4.9), the values required are
the probability and frequency of system failure given 5 is good and then given §
is bad. The system measures can then be calculated in terms of these values.

The failure and repair rates of the components are:

M= A=A = A= A5 = A
and

Hi = Mg = M3 = Mg = U5 = M

The probability of a component being down

=
Pa rtp
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5 Good N

Fig. 4.9 Decomposition of a complex reliability block diagram into
simple structures

Given 5 Good

Piza = D3

Py = 1—png = 1'“17?1

fiz = Praa(y + 12)
2upg

. The equivalent failure rate of component 12 is given by (3.37)

Nz = f12/P12u
2up3/(1 —p3)

1

and the equivalent repair rate

M2 = frafPr2a = 21
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The values for the equivalent block 34 are the same as for 12 because they
consist of identical components. The equivalent blocks 12 and 34 are in series
and therefore

P(System failure |5 Good) = Piazag

= 1 =Pyl
= 1P = 2w —r
f(System failure|5 Good) = P23, (As2 + Asa)

4up% (1 —pd)
Given 5 Bad
Pisu = Pubsy = (1 —Pa)
Pizg = 1 ~Pisu
= 2pq — P4
fis = Piau(MTA9)
= (1—pa)® 22
B13 = fi3/P1aa
21 —pa)
T w.-p3
P(System failure |5 Bad)
= Pin4d = P13aP24d
(2pa —p3)*

f(System failure|5 Bad)

it

= Pinag(iiz + 12a)

M —pa)’
24 — P}

4upa(1 — pa)(2pa — P3)

Il

Qpa —p3)

These results can now be combined using formulae (4.8) and (4.9).
P; = P(System failure|5 Good) P(5 good)
+ P(System failure |5 Bad) P(5 Bad)
= (205 — P91 —pa) + 2pa —P2)*Pa
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= 2p} +2p} —5p§ + 20
and

il

f(System failure|5 Good) P(5 Good)

+ f(System failure |5 Bad) P(5 Bad)

+ (P(System failure|5 Bad)

- P(System failure|5 Good))P(5 Good). As

fr

= 4up3(1 — P —pa) + 4uiCpa — P —1a)
+((2pa —p3)* — 203 + 0§ P4
= u(4pj + 6p3 —20p5 + 10p3)
Mean cycle time = 1/f;

and
Mean Down Time = p/f;.

Cut Set or Tie Set Methods

The network reduction approach is quite useful when the block diagram consists
essentially of series and parallel structures. When the reliability block diagram

is complex, decomposition into simple series and parallel paths may not be

easy. The process could be quite difficult to program because it would require
alot of scanning. The approach using cut sets or tie sets is especially useful for
computer applications. The following definitions are useful in appreciating this
approach.

Simple Path

If in going from node x to y no node is traversed more than once, the path is
simple. For example, in Fig. 4.8, 1-5—4 is a simple path.

Connected Subnetwork

A subnetwork is said to be connected if there exists a simple path between all
pair of nodes.

Cut Set

This is a set of components whose failure alone will cause system failure. A
minimal cut has no proper subset of components whose failure alone will cause
system failure.
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The minimal cuts for the reliability block diagram shown in Fig. 4.8 are
listed in Table 4.1.

Table 4.1 - : Minimal cuts between input and output nodes in Fig. 4.8

Minimal cut set Components in the set
o) 1,2

C, 3,4

C, 1,4,5

C, 2,3,6

Path or Tie Set

This is a set of components whose functioning alone will guarantee system
success. A minimal path or tie set has no proper subset of components whose
functioning alone would ensure system success.

In this approach it is possible to proceed either through cut set manipulation
or tie set manipulation. The choice is usually dictated by their relative numbers.
Both methods are explained. )

Tie Set Manipulation

In the minimal path all the blocks constituting it are in series. The failure of any
one of these blocks would render that path ineffective. The minimal paths
themselves are, however, in parallel as the system will be successful so long as
there is even one path available between the input and output of the reliability
block diagram. Denoting the path available and unavailable by T and T
respectively

P, = P(T,UT,UT;U...UT,,)

[P(Ty)+P(T,)+P(T3)+ ...+ P(Ty,)] « (:l) terms

n
—P(Ti N +P(TyNT3)+ ...+ P(T;N T} < (2) terms
i#j
H{P(TNT,NT)+P(TyNTaNT)+. ..

n
+P(T;NT; N Ty)] <—( ) terms
[ESET 3



118  System Reliability Modelling and Evaluation

+ (1) PN TN .. .0 T, «(n) terms (4.10)
n

The total number of terms in this expression is 2”-1 where n is the number
of tie sets. It can be seen from Equation (4.10) that the independence of
components need not be postulated. All that is needed is the evaluation of all
the terms of the expansion (4.10). In the case of dependent failures, however,
the entire state transition diagram may have to be drawn to evaluate the above
terms. This method is therefore of importance for independent components.
As the number of tie sets, however, increases, the expansion of all the terms
becomes a formidable task. In such cases useful approximate formulae can be
obtained by Boole’s inequality.

P(T U T,V .. UT,)SP(Ty) +P(Ty) + P(T3) + . ..+ P(T},)

Therefore if only the first row in the expansion (4.10) is calculated, the result
will be an upper bound approximation. This upper bound becomes a good
approximation when the component reliabilities are low. As the components are
assumed independent

P(Tt) = I—I Piu
€T

When the number of tie sets is relatively small so that explicit relationships
can be derived, the following procedure can be used to obtain exact values:

1. Calculate the tie set availabilities
KT) = T Piu
JET;
2. The formula for system availability assuming the paths are independent is
Po=1- I\;iI (1—=p(T))

3. Independence of paths has been assumed in the above expression. It will
contain some terms containing p'ﬂ. These terms are introduced due to the path
independence assumption in calculating the 2nd to nth row in expansion (4.10).
Therefore, the exact result for P may be obtained by replaing % by p;,,. This
procedure is, however, possible only when the number of tie sets is small and

an explicit expression can be easily derived. When only the numerical results are
to be obtained, either the expansion (4.10) may be evaluated or the upper
bound approximation may be calculated.
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Cut Set Manipulation

In the minimal cut the blocks are in parallel as all of them must fail, to produce
a cut. The minimal cuts themselves are, however, in series as even a single cut
ensures failure. Denoting the failure of the ith cut set by C_‘i, the probability of
system failure is

P; = P(CLUGUCU...UCy) “.11)
Ps =1 _P/
The Expression (4.11) can be expanded in the same manner as (4.10) and all

the comments on (4.10) apply equally well to this expansion. By Boole’s
inequality

Py < P(C)+P(Cy)+ ...+ P(Cp)

This upper bound of the probability of failure is useful in the high reliability
region. The above inequality can be manipulated into the following form

Py 2 1= [P(C)+P(C)+...+P(Cp)]

This lower bound is good when the component reliabilities are high. The
components being assumed independent

PCG) =1~ Qc Pja
7=

When the explicit formulae can be derived, the following procedure can be
used to obtain the exact values.

1. Calculate the cut set availabilities

P(C) =1~ jel—é.pjd
i

2. The formula for system success assuming the cut set independence is

Ps = I\;‘-[P(Cx)

3. Replace pf;, by pj, , the resulting formula will be the exact expression for
system reliability.
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Frequency Calculation Using The Cut Set Approach

In order to understand the derivation of the failure frequency formula, the
relationship between the minimal cut set and the system state-space should be
understood. Consider a minimal cut set C; which has components / and m as

its members. This means that if the components / and m fail, the system will be
failed irrespective of the states of the other components of the system. The
failure of the members of C; is equivalent to the system being in subset S; of the
state space S, where

Si = { 8 in the state s;, the components / and m are failed and the other
components exist in a particular state }

The state s}’ in which / and m are failed and all of the other components are
functioning is called the vertex state of the subset S;. The system can transit from
the vertex state either upwards (in the sense of less components in the failed
state) by the repair of the failed components / and m or it can transit downwards
(in the sense of more components in the failed state) by the successive failures of
more components. The subset S; is constituted by the states generated by the
downward transitions from s’l-’. The system could transit out of S; by the repair
of Z or m and therefore the frequency of encountering subset S; is

fi = Z P(s;) Z K
REC;

85E€8;

24 5

( » uk) ®s)
13

Ec;

( D uk) @

il

kEC;

5 P(C)

1

B= Y m
KEC;

The relationship between the cut set and its equivalent state space subset
can be more clearly understood by reference to Fig. 4.10 where the cut set C|
of Fig. 4.8 and the equivalent subset S1 are shown. S1 = {sl Syse ’Ss}' The
states which are members of S are generated by successive failures of
components 3, 4 and 5 from the vertex state s, . From any state &S, the system
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could transit out of S, by the repair of component 1 or 2 which are the members
of C, . The frequency of encountering S is

8
fi = (uy ) Ll P(Si)]

= (u + 1) P(Cy)
= (1 + 1)@ 1aP24)

Now consider another minimal cut set Cy. and its equivalent subset S of the
state space S. The reader can appreciate the arguments by taking C; = C'3 in
Fig. 4.10 where C, is the minimal cut set of Fig. 4.8. If §; and S were mutually
exclusive, there could not be any transition between S and ;.. This can be seen
as follows. Suppose that from state s% of subset S, a transition is possible to
state s, of subset S, by the failure of a component, then the state s, and all the
states generated from s;, by the downward transitions will be common to both
Si and S;.. The two subsets will not therefore remain mutually exclusive.
Reasoning backwards, there cannot be transitions between two mutually
exclusive subsets equivalent to-two minimal cut sets. In such a case the frequency
contribution due to S i and S is fz‘+fk' In practice, however, the state space
subsets representing minimal cutsets overlap and the frequency formula for this
case can be derived by referring to the Venn diagram in Fig. 4.11.

Let
S; = A, +4,
and
Sp= Az + A4,
so that
SiNS, = A,
The frequency of encountering the subset S; U S}, is given by
f(S; YU Sk) = P(A); + P(As)y, + P(A2) (1 N i) 4.12)
where
B= Y
jec;
b= 3 W
i€Cy,
and
EOER =Y W
JEC;NCE,
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Fig. 4.10 The equivalence between minimal cut sets and
state space representations
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That is i; N [, represents the summation of the repair rates of the components
common to both minimal cut sets. For example for C; and Cs, i; N3 =y,
since only component 1 is common to both cut sets.

Equation (4.12) can be written as

FS;iUSE) = P(Ay +A2)R +P(As + Ay, + P(A2) (@ N )
—P(A2)i; —P(A2) it
= PSR + P(Sk)ile — P(S; N Sp) (s + B — i O )
= P(S)i; + P(Se) i — P(Si N Sp)(@: Y Br)
= f(S) +1(Sk) — f(S: N Sk) (4.13)
P(CHR; + P(Cim, — P(C; N Co) (B Y i) 4.14)

Il

In the above expression ji; U fi, is the summation of the repair rates of the
components which belong either to C; or to Cy, or to both i.e.

BYL = Y My
jecocy

Aq

A3 A2

Fig. 4.11 Venn diagram for overlapping subsets representing
two minimal cut sets

Equations (4.13) and (4.14) can be extended to the union of three subsets
representing three minimal cut sets as follows

FS; VS, US) = f(S; VU SL)+ f(S) —F((S; VSE) N SY)
= f(S) "ff(Sk)—f(Si N S) + £(S)
— fU(Si NS Y (S, NSY))



124  System Reliability Modelling and Evaluation
= 1(S;) + f(Sk) + () —f(S; N Sk)
=[S N S) +£(Sk N S) —F(S; NS, N S))]
= f(S) + f(Se) + 1(S)
= S N Se) + 7S NS + £(Si N S))]
+ f(S; NS, NS
= P(C)E; + P(C) + PO
= [P@Cin Go) (@ Y ) + P(Cr 0 CY (@ Y i)
CHPEN Y@ Y )]
+P(CNGC N Y@ Y i Y fiy)
where as before §; U fip, U@ is the summation of the repair rates of
components which belong to any or all of the minimal cut sets C;, Cj, and C;.

Proceeding in the above manner, the formula can be extended to the general
case of m cut sets

fr = f(S1US,USsU...US,,)

i

= _ R m
[P(CHE +P(Co)jiy +... +P(Cp) it ] <« (1) terms order 1

—[PCNG)E V) +PC NG Vs + ...
. m
+ P(C; Q G Y )] <« 5 terms order 2
i)
+[PECINCNC3)(@E Ui, URs) + ..
o= m
+P(C;NGNC ) VE; Uyl <« terms * order 3
i#jEk 3

ED™PENGNEGN...NGy)

X (U g, U sV, .. Uiy)] order m
(4.15)

The calculation of the terms of the above expansion involves simple
multiplications and additions. The contiibution by terms beyond the third or

System Reliability 125

fourth order is quite insignificant and the calculations can be suitably truncated.
In high reliability systems the first row alone gives good results

ie.
for= ; P(C)in;

This equation gives the upper bound approximation for the frequency of system
failure. The lower bound to the frequency is :

fia = fon— _;k P(C; N Co)(@; + ).

fy, and fy, are the first upper and lower bounds to the approximation of jf
given by Equation (4.15). Successively closer alternating bounds can be
obtained by the additions of odd and even order terms. The computation can
be truncated when the margin between upper and lower bounds becomes
negligible.

The use of the cut set manipulation equations can be illustrated by application
to the network of Fig. 4.8. The minimal cuts for it have already been enumerated
in Table 4.1. All the components are assumed identical each having \ and u as
the failure and repair rates. The probability of component failure

A

P, =
d Atu

. The expression for probability of system failure is

P, =PCUC, UG UG
= [P(El) +P(C_2) +P(E3) +P(64)]
—[P(C,NC)+P(C,NCs)+P(C,NC)+P(C,NCy)
+P(C5 N )+ PG, NCY)]
+[PC,NCNEC)+P(C,NC,NC)+PC,NCNC,)
+P(C,NCNEC)] —[P(C,NC,NCNEL)]
The various terms are evaluated below

P(C,) = P(C;) = (pa)

P(Cy) = P(éo,) = (pa)’

P(C,NG) = P(CiNG) = PIC,NGCy) = P(C,NC3)

= P(C;NGCy) = (pa)°
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P(C:0Cy) = (pa)

PC,NC,NC)=P(C:NC,NEC) = PC,NCNECy)
= P(C, NG NG) = (pg)°

P(C,NC,NC;NC) = (pa)

Substituting these values

P, = 2p} +2p} —5pg +2p3

Calculation of frequency of failure.
The formula for failure frequency can be written as

Now

and

f; = [PC)i +P(Co)itz +P(Ca)its + P(Ca)ftal
= [P(CL N Go) (s Vi) +P(C N Co)(@n Y a)
+P(C; 0 C)(@y Y fia) + P(C, 0 C3)(2 Y is)
+P(Cs N Ca)(fis U i) + P(C; N Ca) (@2 Y a)]
+ [P(C, NC, N3 Y fin VU i)
+P(CyN TN Ca)(y Y iV fia)
+P(Cy NC3 NCa)([Ez Y i3 U i)
+P(C NCs NC)(E: Ytz Uia)]

—[P(C, NG, NCs NECY] (i Y i URis Y i)
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Substituting these values
f; = (4p} + 6p3 —20p3 + 10pg)n

The numerical values were obtained by keeping u equal to 438 repairs per year,
i.e. a mean down time of the component equal to 20 hours, and varying the
failure rate from two failures per year to 219 failures per year. These results
are shown in Table 4.2. The purpose of this study is to show the difference
between exact and upper bound approximate results as a function of the
component reliability. It can be seen that when component reliability is
close to unity, the upper bound approximations gives almost exact results.

Algorithm to Determine Minimal Cut Sets

" When the reliability block diagram is small, the set of minimal cuts can be found

by visual examination. In a large network such an examination could be very
laborious and perhaps even impossible. Reference 3 describes an algorithm for
generating the minimal cuts of a network. This procedure is quite suitable for
computer application.

The input or supply node of a reliability block diagram will be denoted by s
and the output or the load node by I. The removal of the components in a
minimal cut separates the network into exactly two connected subnetworks,
one containing the node s and the other node /. The minimal cut in other words
partitions the set V of all nodes into subsets N* and V™. The set Nt defines a
connected subnetwork that includes s and N~ defines another connected
subnetwork that includes /.

The algorithm generates a tree of the network, the vertices being the points
and the edges being the line segments on the tree. The tree starts from the root
vertex denoted by 0. The edges are marked ntorn. The symbol "t means that
the node » of the reliability diagram is a member of Nt and n” means that node
n of reliability diagram is a member of N™. With each node i of the tree are
associated four subsets of the nodes of the reliability diagram, Xy;, Xo;, X3
and W;. Let h; be the unique simple path connecting vertex i to the root vertex,
then

Node n € X; if an edge in the path A; is labelled n*
Node n € X,; if an edge in the path 4; is labelled n™
Node n € X3; if it is neither in X;; nor in X,; but is a member of N.

Node n € W, if it is in X3; and if it is the terminal of a component whose
other terminal is a member of X;;
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Table 4.2  Probabilities and frequencies of failure for the system in Fig. 4.8

year

438-0 repairs/

u=

Frequency of Failure

Probability of Failure

Component
Reliability.

failures

Under Bound
Approximately

Exact

Exact

Under Bound
Approximately

per year

364451540 x 1071

-145433779
-578861915

-3644142301 x 107
-1453752889
5779632215

4151014274 x 1074

4150801221 x 10~

0-995455
0-990950
0-982063
0-964758

20
40
80

160

3
2190

-1652791341 x 1073
-6550300836 x 1073

‘1652457187 x 1073

6545162018 x 1073

2571581307 x 1072 2277773988 x 10! 22910491 x 10!

2563976981 x 1072

-8769140832 x 10! -895097294 x 10!

9902391570 x 1072
2962962962

9797874590 x 1072
2427983539

0-9319149

20

2920000000 x 10°

2018765432 x 10°

0-6666667
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The algorithm now proceeds as follows:
%

Step 1: Generate vertices 0, 1 and 2 and label the edges (0, 1) and (1, 2)
as s* and 1™ respectively. This means that for all minimal cuts s and 1 are
members of N* and N~ respectively. The vertices O and 1 are assumed

“'scanned but vertex 2 is unscanned. Go to step 2.

Step 2: If there are no unscanned vertices, the complete tree has been
generated and the algorithm terminates. Otherwise, choose the unscanned

vertex with the greatest index and mark it scanned and let it be called i. Find
the uniq[ue simple path /; from i to the root vertex 0, and identify the subsets
X14, X4, X3; and W; as defined above. If W; is null, i.e. has no member go to
step 7, otherwise choose x, an element of W; and construct the subnetwork
defined by the set of nodes X4 = X,; U X3; — x. If this subnetwork is connected,
go to step 3, and if not go to step 4.

Step 3: Generate two new vertices k and k + 1 where k is one greater than
the highest index so far in the tree. Create edges (i, k) and (i, & + 1) and label
them x* and x™. The vertices k and k + 1 are unscanned vertices. Go to step 2.

Step 4:  Find the set of nodes X5 which defines a connected subnetwork that
includes 1. If X,; is a subset of X5 go to step 5, otherwise to step 6.

Step 5:  Generate vertex k and edge (i, k) labelled x*. Determine the set

X¢ = X4 — Xs.1f | Xs | is the number of the elements of X, then create

vertices k + 1, k, ...,k + [Xg | and generate edges (k, k + 1), (kK + 1, k + 2)
<5 (k+1Xg | =1,k + | X4 |) and label them Z* where Z € X,. Finally generate
vertex k + | X | + 1 and create edge (i, k£ + | X4 | + 1) labelled x™. Go-to step 2.

Step 6:  Generate one new vertex index k and create the edge (7, k) labelled
x~. Go to step 2.

Step 7: At this step a minimal cut has been generated. The set N = X;; and
Ni =N — Xy;. The components whose one terminal is in N;" and the other in
Nj are the members of the minimal cut. Go to step 2 to create other minimal
cuts.
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Fig. 4.12 The minima!l cut generation tree

The above algorithm is illustrated by application to the reliability block
diagram of Fig. 4.8. As the nodes are to be marked by integers the components
may be represented by letters as shown in Fig. 4,12 which shows the tree for
this network. The reader is urged to verify this tree by going through the
different steps of the algorithm.
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Exercises

1. Calculate the probability and frequency of system failure in Example 4.2
using the state space approach.
2. Enumerate the minimal cut sets for the following reliability block diagram.

(>
[ 2
R

Input node 1 8 Output node
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