CHAPTER 5
Techniques for Large Systems

Introduction

Several mathematical modelling techniques suitable for reliability evaluation
have been illustrated. Although the problem of system reliability may appear
conceptually simple, at least when constant transition rates can be assumed, the
task may become difficult with large and complex systems. In control systems,
communication networks and power networks, it is sometimes easy to derive
the reliability block diagrams from the schematic diagrams. When the network
approach can be used, the problem becomes relatively simple. In certain cases,
however, it is difficult and often impossible to apply this approach. This is
especially so with systems involving dependent failure or repair modes and those
involving graded modes of operation. In such cases the state space approach is
often the only method available. This chapter will identify problem areas while
using this approach and suggest suitable techniques for overcoming these
difficulties.

The Problem Areas

It was pointed out in the last chapter that the state space approach essentially
involves the following steps:

1 Evolution of the state space and the interstate transition rates.
In a small system, it is possible to draw the state transition diagram of the

system and then solve it with a calculator or program it for the digital computer.

When, however, the state space is large, this procedure becomes impractical and
often impossible. In such cases this process can be performed by a computer.
The method was described in the last chapter. The basic idea is to let the states
sequentially evolve by the realization of each possible transition mode of the
components. When the transition modes of the components are dependent,
system states may impose restrictions on some transition modes but in systems
consisting of independent components, each component is allowed to realize
all of its transition modes. In certain systems using the symmetry of the
transition diagrams, special methods may be evolved for generating the state
space and the interstate transition rates. The main problem in this step is to
ensure that the correct state space and interstate transition rates have been
generated. The generation of a correct state transition rate matrix is very
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important as this is the foundation for further calculations. )

In some cases, the program may be used to generate the transition rate
matrix of a similar but smaller system. The matrix along with the description
of states can be printed out and checked visually. For ease in checking, fictitious
transition rates, usually whole numbers may be used. When this is not possible
or-convenient, the program should have an independent checking subroutine.
Each system state should be examined for the possible modes of transition. For
each mode the resulting state description should be constructed and compared
with the ones which have already been generated. If both the state description
and the interstate transition rate agree, for all the states, it is reasonable to
assume that the state transition rate matrix is correct. If at any state there is any
discrepancy, the state and the resulting states should be printed. This will help
in debugging.

The other problem is the size of the state space. As an example, a system
consisting of  independent two state units will have 2" possible states. The
state transition matrix will be of 2"x2" size. The available memory in the
computer may soon be exhausted. This difficulty can be alleviated to some
extent by using the principles of sparsity programming. This problem will,
however, be discussed in more detail later.

2 Calculation of the state probabilities

When the components are independent, the problem becomes simpler,
since the system state probabilities can be derived from the component state
probabilities by the simple multiplication rule of probabilities. Since the
calculation of the probability of each system state can be done independently
of the other states, evaluation can be made selectively for the states required
for final calculation of the reliability measures. In the case of dependent
transition modes the probabilities of all the states have to be calculated since
the states can be solved independently for probabilities. If time dependent
solutions are required, the state space equation has to be solved. The methods
of doing it have already been discussed. Most often, however, the steady state
solution is required. The problem is then reduced to solving a set of
simultaneous linear equations. This is usually done using the Gauss elimination
or Gauss—Jordan method. These techniques are explained in Appendix 1.
Though conceptually simple, the problem can become formidable even on the
computer as the number of components becomes large, and the state space
becomes very large. Computer storage limitations, the errors introduced by
rounding off and the computation time required all make the problem a very
difficult one. It should be appreciated that the transition rate matrix contains
failure rates which are usually very small as compared to the repair rates which
are comparatively large. The operations on small and large numbers are bound to’
introduce rounding off errors. It can therefore be appreciated that steps have to
be taken to limit the state space.
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3 Calculation of the reliability measures

The two key indices are the probability and frequency of encountering a
certain configuration of states. The other indices, the mean cycle time and the
mean down time can be then simply derived. Success or failure may not provide
a complete description and it may be necessary to evaluate reliability measures
for graded modes of operation e.g. in a power system it may be necessary to
calculate the probabilities and frequencies of having different magnitudes of
capacity deficiencies. Similarly in a transit system it may be necessary to know
the probabilities and frequencies of having various numbers of vehicles available
for transportation. The various states are then grouped into subsets denoting a
particular condition. The probabilities and frequencies of these subsets are then
calculated using the equations given in Chapter 3. In general all the states have to
be scanned to classify them into the required subsets and to select the
appropriate transition rates for frequency calculations. In many cases, the
classification can be done by taking the advantage of the systematic pattern of
the state space. But if all the states have to be scanned, it could be a time-
consuming process.

It can be seen from the above discussion that the problem with large systems is
essentially the size of the state space. In some situations the size of the state
space does not grow proportionately with the number of components. The
growth of the state space in such cases is restricted because of the dependency
considerations. A familiar example is that of a series system of #n components
when the assumption is made that the exposure of components to failure is
zero when the system is down. In this case the number of states is simply n+1
as compared with 2" when the component failures are independent.

In general, the following procedure should be adopted.

1. The system should be divided into suitable subsystems which can be
handled conveniently one at a time. A system is usually naturally subdivided
into subsystems on the layout or functional basis. Most often this natural
subdivision can be used as the basis for classification for reliability evaluation,
but it is not necessary to do so. Primary concern is on the system effect of
component failures. Every attempt should be made to divide the system into
independent subsystems. The advantage in doing so is that the probabilities of
the system can then be found by simple multiplication of the probabilities of
the states of the subsystems. Another advantage is that the combination of the
independent subsystems is simpler and the equivalent transition rate concept can
be more conveniently employed. This will become clearer when the implications
of the equivalent transition rate are considered. The independence of various
subsystems may sometimes be achieved by shifting some components from

one natural subsystem to another. This trick can sometimes prove quite useful.
2. The state space of each subsystem may be reduced either by merging states
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or by truncating very low probability states. The principles of both of these
techniques are explained in detail in this chapter.

3. The subsystems should then be combined into a complete system and the
required reliability measures evaluated.

Two important concepts in large systems are therefore the merging of the
states and truncation of states.

Equivalent Transition Rate and the Conditions of Mergeability

The equivalent transition rate concept was introduced in Chapter 3 and used for
independent subsystems in Chapter 4, while using the network reduction
approach. The principal use of the equivalent transition rate is in reducing the
system or subsystem state space. The basic idea is to find a state space which is
equivalent to the original state space but is more convenient to use. Assume that
the entire state space is partitioned into m subsets

X;,i=1,2,...,m. The equivalent transition rate from subset X, to X, is
obtained by using Equation (3.37)

RO = Y Y poN / Y pi) .1
i€Xp I€EX i€X,

q

This section examines the conditions under which this equivalent model will
give the same results as would be obtained by using the original model.
Complete knowledge of these conditions is quite important and the lack of
awareness in this area can lead to gross errors. The concept of equivalent
transition rate will be examined both in the transient domain and under the
equilibrium conditions. This concept can be useful in the following ways:

(a) System State Space Reduction

Sometimes it may be desirable to reduce the state space of the system by
merging together certain sets of states. The equivalent transition rates among
the subsets of the lumped states are required.

State merging in the system state space is generally of value when the
equivalent transition rates can be calculated without having to solve for the
system state probabilities.

(b) Subsystem State Space Reduction

The most practical method is to break down the system into subsystems
which can be individually solved and then to combine these solutions to get the
results for the entire system. It may be desirable to reduce the state space of an
individual subsystem and therefore the equivalent transfer rate will be calculated.
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Model reduction in this case is useful even if all of the subsystem state
probabilities have to be calculated to determine the equivalent transfer rates.

Transient Domain

The equivalent transfer rate is first examined from the point of view of system
state space reduction. The equivalent transition rate from subset X_ p to X q is
given by Equation (5.1). )

The following observations can be made from the relationship in (5.1):

1. Since the state probabilities in Equation (5.1) depend upon the initial state
probability vector, the equivalent transfer rate, )\(e)(t) is a function of the initial
state probability vector. In contrast to this the interstate transition rates )\ij of
the original state space are independent of any such condition. If )\(e)(t) are to
be independent of such a restriction they must then be independent of the state
probabilities. This can happen if Z?\ln is the same for all jeX’ 50 that

jeX,

NI@ = Z 7‘:’@2 pd?) Z p?)
iEX, €Xp EXp

= .é‘;( N = MY (2)
IEXq

2. Unless the expression for equivalent transfer rate is independent of the
state probabilities as in Equation (5.2), )\g‘;)(t) is obviously a function of #. If an

explicit expression for :\(e)(t) can be obtained, the solution for the reduced state
space can be obtained by using Kolmogorov differential equations for the time
specific transition rate matrix

. oP(t,
AP,y = LE0 53)
ou
where for u> ¢
P(tu) = The column matrix whose ith value p;{t,u) represents the
probability of being in state i at time u for the given initial
condition at #, i.e.
pilt,u) = P{Z(u)=i|Z(t) =}
and A(u) = The transpose of the time specific transition rate matrix. When

the initial conditions are specified at the time of origin
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OP(0, u)

A@PO,u) = =~

G4

When Equation (5.4) is used for the reduced system, the initial condition,
Z(0) should be the same as for the )\I(JZ)(M) in (5.1)
Writing the differential equation for the lumped state g

P4(0,1) _

5 3 N2 pp0,u) = p0,1) ¥ NP (5.5)
u PEX, "

PEX,

where X, = {All states except q}, the subscript 7 indicating that the reference is
to the reduced state space.
Since the initial condition for (5.1) and (5.4) is the same

20, ) = ¥, piw)
i€X,,
and
pg(0, u) ,
qa = Z pi(u)
u €X,
The indices p and q refer to the lumped states whereas / and j indicate the orig-

inal states. Substituting these values into Equation (5.5) and substituting the
values of AL9(#) from Expression (5.1)

Y pw= Y ¥ ¥ PN — DD DI I ()). ¥

JEXq PEX; IEX) JEXy PEX; i€Xq1EX,

Now if X* = X, and X~ is the disjoint subset, then the above equation can be
written as

e =Y Y phi— Y Y p
ex* X+

€X jE jEXt iex”

It can be seen that this is the same expression as would be obtained by
following the argument used to derive Equation (3.7). The time specific
equivalent transfer rates, therefore, do represent the process accurately but
the essential point is that this does not solve anything because all the state
probabilities have to be found before the equivalent transfer rates can be
determined. The only case when the state probabilities do not have to be
evaluated is the one given by Equation (5.2). In summary, mergeability from a
systems state space viewpoint can be defined as follows:
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Definition:  If the entire state space is partitioned into m subsets X;, i =1.2,....m
and the equivalent transfer rate from subset X, to X , given by Equatlon (5.1),
is time invariant and independent of the 1n1t1afjstate probability vector, then the
state space is said to be mergeable into the said partition.

The necessary and sufficient condition is that the transition rate from each
state in subset X, to each of the states in X  when summed over all the states
in X _is the same for each state in X b and the required equivalent rate is given
by

(e
>‘pq - Z >‘ii
j€Xq

When examining mergeability from the point of view of subsystem reduction,
the state space of a subsystem-S , is assumed to be partitioned into subsets Xa,

., X% in such a manner that no information about the reliability analy31s is
lost. The equivalent transfer rate from one subset to another can be obtained
using Equation (5.1). The important consideration for the present purpose,
however, is that this equivalent rate should hold when this subsystem is
combined with another subsystem. The equivalent transfer rate from the
lumped states of subset X? to those of an is given by

Aim(@) = (Z IZGEDWRY /Z pi(®)

€exs,

After merging together the states in each subset, there will be p equivalent
states in the subsystem S, one equivalent state corresponding to one subset.
This subsystem is now combined with another subsystem S, with equivalent
states b 1 b2 , oy b It is assumed that in the combined system there will be
D x q states, there being a whole set of equivalent states a,u=1,.,p,
corresponding to every equivalent state in subsystem b. This can be indicated as
follows

(bay, (bas, ..., (b1
B2)ai, (br)a,, ..., (bi)ap
(bq)al: (bq)ab ey (bq)ap

It should be appreciated that this arrangement may not always be possible
as some combinations may be incompatible. In the subsystems exposed to a
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common two state fluctuating environment, which may alter the component
failure and repair rates, such an arrangement will exist in either state. Only the
arrangement shown above will be discussed but the results will also hold for
other cases. After combination of the two subsystems, certain interstate
transition rates may be altered but it is assumed that the interstate transition
rates with respect to the merged states are not changed so that the act of
combining the subsystems does not affect the information contained in the
merged states.

For the transfer rates to hold after combining, the equivalent transfer rate
from (b, )a; to (b, ))a 1 Should be the same as that from ajtoa,,. Hereu may be
any number from 1 to q. Therefore, for mergeability

() = Nin(2)
ie.,
E pi) T Ny
ext? 0 g M P M 5.6
AN 0] T 00 ®
iE€X] €X]
where

pi(t) = The probability, for the given initial state, of being in state i € X{*
corresponding to the condition represented by b,, in subsystem S;.

The following conclusions can be drawn from the Equality (5.6):
(1) For independent subsystems

i) = pi(O)ppu(®)
where

pbu(t)

1

The probability of being in the equivalent state b, for the given
initial condition

Therefore

i

2.0) (,Za PPl Y, x) / 3. PO Prult)
55 €x8, €X]

I

(ieng pi(r)ie';fn )\u) / Y p®

iexy
(D)

i
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The time specific equivalent transfer rate, therefore, holds unconditionally
if the subsystems being combined are independent. The evaluation of these rates
is, of course, a separate problem.

(2) If, however, the subsystems are not independent, the Equality ¢5.7) can hold
if
(i) > N;;is the same for any i in which case
EXh,

AGIEN D x.»,») PR HO) / Y, PrO)
JEXm ) €X €X;
= . N;
€Xm
i [
= MNm

This is the same condition as previously specified for mergeability.
(ii) Alternatively if for a given initial state probability vector

pie) = p5) = ... = pi(®)
pi®) = p(t) = ... = p)
i.e., if the states being lumped have the same time specific probability

N(®) = N

= Y. 2o Nilm

i€X{ €Xm

which implies

where #; = The number of states in subset X}

Steady state is a special case of transient analysis with ¢ > oot The analysis
for steady state conditions of mergeability is the same as that for the transient
case with the following differences:

1. The steady state equivalent transfer rate is time invariant.

2. The steady state probabilities are independent of the initial conditions and
therefore the steady state equivalent transfer rate is independent of such a
restriction.

The results of the mergeability analysis are summarized below.

1. If Z)y is the same for any z'eX‘lz, then the equivalent transfer rate is time
jex?,

invariant and independent of the initial condition. When this condition is

satisfied between all the subsets taken in pairs, the Markov process of the
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subsystem S is said to be mergeable into these disjoint subsets. The equivalent
transfer rates so determined hold when this subsystem is combined with another
subsystem S 3> Provided the interstate transition information contained in the
Iumped states does not change by virtue of this combination.

2. If for the given initial condition, the probabilities of the states in a subset are
equal, then these states are mergeable and the equivalent transition rate holds
when this subsystem is combined with another subsystem, provided the initial
condition is not violated. In the steady state case, the initial condition does not
affect the conclusion.

3. For independent subsystems, the states of the subsystem may be lumped
into any desired disjoint subsets. The equivalent transition rate is unaltered by
combination but because of the computation effort required, this does not seem
to be of much significance in the time specific analysis. In steady state analysis,
this can facilitate the calculation of the frequency index. A familiar example is
the lumping together of the identical capacity outage states in a generation
system mode] before combining it with the load model.

Example 5.1: The concepts outlined in the previous section can be illustrated
for the steady state condition using the simple system shown in Fig. 5.1.

—
Supply 3

Load

Fig. 5.1 A simple three unit series-parallel system

The system consists of two lines 1 and 2 in parallel. This combination is then
in series with component 3. Both lines 1 and 2 have identical failure and repair
rates A and p and each is capable of supplying the full load. The failure and repair
rates of line 3 are )\3 and Ky ‘respectively. The system is now assumed to consist
of subsystem S of lines 1 and 2 and the subsystem Sy, of line 3. The state
transition diagrams of the two subsystems taken individually are shown in Figs.
5.2 (a) and (b) respectively. On combining S, and S, there will be a total of
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Fig. 6.2 (a) The state transition diagram of Subsystem S,
(b} The state transition diagram of Subsystem Sp,
I
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Fig. 5.3 The state transition diagram after combining S5 and Sp,
A,
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Fig. 5.4 The state transition diagram after combining
reduced S with Sp
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eight states. These can be written as
(3U)1,(3U)2,(3U)3,(3V)4
(3D)1,(3D)2,(3D)3,(3D)4
The condition inside the parenthesis is that of § and the outside numbers refer
to the state numbers of S . Only one line out of {1,2; is required for successful
operation and therefore the behaviour of S can be represented by a two state

component in which state I corresponds to states {1,2,3} and state m to state
{4 } of the original state space. The equivalent transition rates are

N = A(p2 + p3)
im — +
pitp2tps
and
Ant = 20

The question to be examined is, do these equivalent transfer rates hold after
combining S, and S ? This problem is considered for both complete and
restricted repair facilities.

1 Complete Repair Facilities

When each component can be repaired independently, the two subsystems
are independent. It can also be observed that when the two subsystems are
independent, the interstate transition modes remain unchanged after interaction.
Now, if merging is to be valid, the equivalent transition rate A‘lzm, i.e. from (3U)
to (3U)m should be the same as 7\lm’ i.e. from  to m. Examining the state
transition diagram in Fig. 5.3

2o = (PP
™ Py pY +pY

Here the superscript refers to the condition of system b. Since the subsystems
are independent

Ao — (P2P3y ¥ P303)N (P2t P

w = =

™ P1Dsu T P2P3y T D3Pay p1tpatps
= )\lm

1t can be concluded from the above discussion that when §,and S, are
independent, subsystem S, can be represented by a two state component
having the equivalent transition rates determined by Equation (5.1). This is the
basis of the network reduction technique described in the previous chapter.
The reason for assuming the subsystems to be independent can now be more
fully understood.
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2 Restricted Repair Facilities

Now suppose that only two lines can be repaired at a time, then in the event
of failure of all the three lines, state (3D)4, in Fig. 5.3, the repair of one line
out of 1,2} must wait for the first repair. Referring to Fig. 5.4, )‘gnbl from
(BUym to (3U)1 s still 2u but 7\‘;”]’1 from (3D)m to (3D)! is now u. The systems
are no longer independent and therefore p? #* pl'~. pl;, and consequently
)\%)’ # Ny, Merging into the above groupings is not possible.

If, however, states {2,3} are merged to give the equivalent state / and if { 1 }
and {4 } are denoted by n and m respectively, the conditions of mergeability

are satisfied and it can be seen that

Ny =Ny =u
and
N = Nm = A

Merging into these states is therefore still possible.

Components Subject to Fluctuating Environment

The following considers the application of conditions of mergeability to a
system consisting of components exposed to a two state fluctuating
environment. The two states are designated as NV and S states and the

durations of these states are assumed to be exponentially distributed. The
component failure and repair rates are constant but depend on the environment.
Failure and repair of the components are independent in a given environment
but the exposure to the common environment introduces the element of
interdependence and the probabilities cannot be found by a simple product
rule. The conditions of mergeability developed in this chapter will now be
applied to this system.

The system is assumed to be divided into a number of subsystems out of
which only subsystems S, and S}, are considered for the sake of convenience.
These subsystems are assumed to contain n;, and n, number of components
respectively. Considering S, it can exist in 2" number of states in each of the
environmental states. The component configuration of each state in either of
the two environment states is the same but the interstate transition rates in the
two weather states are different. The transition rate from a system state in the
N environment condition to the corresponding system state in the S environment
condition is taken as » and in the reverse direction as m. The states in the N
environment may be grouped into subsets X‘ll , X‘i, ..., X% and those in the S
environment as X%%, X%, ..., X%, The combination of states in X% and X¥ is the
same. Since the reduced state space of S, is to be combined with the reduced
state space of Sy, which is also exposed to the same fluctuating environment, the
states in the N and S environment cannot be lumped together. The equivalent
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transfer rates can be found by the application of Equation (5.1). It is obvious
that the transition rate from X‘lZ to X?S is # and that from X?S to X;’ is m. The
equivalent transfer rate from X7 to X% is given by

S = (Z,,pi Za)\ii)/ X Pi
i€X) JEXm 155.9]

p; = The probability of being in the ith state in V environment

where

and
Nim = The equivalent transfer rate from the lumped states of subsets X
to those of Xg,.

The same treatment holds for the states in the S environment. After merging
together the states in each subset, there will be p equivalent states in each
environment condition in the subsystem S, one equivalent state corresponding
to one subset. These equivaletit states may be indicated by a,,4,, ... in the
N environment condition, and a‘f N ai, ..., & in the S environment condition.
Now suppose that this subsystem is combined with the other subsystem Sy, with
equivalent states {bl »bys byt and bf, b;', b }in the N and S
environment condition. In the combined system there will be p x g states in each
environment condition. This combination for the NV environment is shown below.

®ar, (bi)as, ..., (b1)ap

(b2)as, (br)as, ..., (b2)ap

®a, Bga, ..., (by)ay
Since the two subsystems are exposed to the same fluctuating environment, it
can be easily seen that the equivalent transfer rate from (b;)g; to (b%) 4j isn and

that from (5f) 4§ to (b;)a;is m. For steady state mergeability, the transfer rate
from (b,)a; to (b,)ay, should be the same as that from g; to U, i,

ab . ya
)\lm - )\lm

By the applications of the mergeability conditions the following conclusions
can be drawn:

1. IfS, and §} are independent, the equivalent transfer rates hold
unconditionally, i.e. the states of the subsystem may be lumped into any

desired disjoint subsets. When S , and S, are exposed to the same fluctuating
environment, the independence is possible if either S 0TS 3 Or both subsystems
have components whose failure and repair rates are the same in both environment
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states, i.e. these rates are environment independent.

2. In subsystems which are not independent, the states can be lumped together
if, and only if, either

(i) All the states being merged have the same availability, or

(i) The sum of transfer rates from state { € X° to all states j € X7, i.e., 'e?(" Nij
is the same for all . =Fm

The conditions of steady state mergeability restrict the scope of model
reduction when the subsystems are not independent but even in this restricted
sense model reduction can be of considerable help in large sized networks.

One obvious application is when the elements of a subsystem have identical
failure and repair rates. An n identical element subsystem can be lumped into
2(n+1) states. For example, a four element subsystem will have the following
groups of identical states.

Number of Number of
Group number elements failed identical states
in group

1 0 @=1
2 1 ¢4)=4
3 2 G =6
4 3 =4
5 4 =1

Total 16

The 16 states for each environment state can be lumped into five equivalent
states. Therefore, the subsystem having 32 states can be adequately represented
by 10 states. This application to identical elements subsystems becomes
important when it is realized that parallel facilities normally have identical
failure and repair parameters.

The merging technique can be illustrated by application to the simple system
shown in Fig. 5.5. The data for this system is given below. The N environment
corresponds to normal weather and the S environment to stormy or adverse
weather.

3

Supply—» -«—Supply

a

Load

+ Mean duration N = 200 hours

Fig. 5.5 A simple transmission n
g simple transmission network 00 o S = 1.5 hours
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Percentage of failures during S environment = 20%

Components Average failure rate Mean down time
per year hours

1,2 0-5 5.0

34 1-0 10-0

This system can be split into two subsystems A and B having {1,2} and {3,4}
components. The state transition diagram of system i (= & or ) is shown in
Fig. 5.6.

. State 4 State 0
o SW. - e <t
0 Down n m 0 Down
IM i 2]
7
A A
My State 5 State 1 o
>l sw. < N.W. -
F 1 Down n m 1 Down
‘State 6 State 2
)\TP S.w. — N.W.
i 1 Down n m 1Down | A
i Hi
A A
State 7 State 3
- S.w. - N.w. -—!
X 2 Down n m 2 Down A

Fig. 6.6: Two identical unit state transition diagram
for a two state fluctuating environment.

The following notation is used
m = — = Transition rate from Stormy state (SW) to Normal state (NW).

n = — = Transition rate from Normal state to Stormy state.

2= |~

#; = The mean repair rate of a component in the ith system. The same
repair rate is assumed in normal and stormy states.

A; = Normal state failure rate of a component in the ith system.

A = Stormy state failure rate of a component in the ith system.
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The average failure rate A, is given by where
. N g s T2 = Wy [I](6 x 6 matrix)
= A Ni—= 5.7
v N+S N+S -7 T3 = 0 (6% 6matrix)
If the number of failures in the stormy weather is x percent [0 ! 0
Ty = |———~—l————| (6x 6matrix)
,
- e X (5.8) 0 | 2251
AN+ NS 100
The value of X and X' can be determined using Equations (5.7) and (5.8).
Subsystem Reduction
In subsystem 7, states 1, 2 and 5, 6 are identical and therefore have equal
availabilities. Condition 2(i) is thus satisfied and these states can be lumped )
together. The reducpd mot.lel of subsystem A is shown in Fig. 5.7. This rfaduced " ] w2 2 N2 -
model can be combined with the reduced model of system B. The resulting > fNw. > nw. e W,
state transition diagram is shown in Fig. 5.8."In this diagram, N W, S W, stand B 50 50, —.
for normal weather and stormy weather states and X/, (X =4 orBand / = ,’,"
0, 1, 2) stands for system X with J components down. It can be seen that in the :
i Alus 2% Al2w, % A2
= sw. e SW. S.W.
B0
State 0 Ha 2, State 1 2u, Aa State 2 BQ BO
NW. < | - NW. | Nw.
0 Down 1 Down 2 Down : 22
\ -
™ m m b Al 20 All2us N A2
n yn Y n N.W. - N.W, N.W.
State3 iy 2%a| Swted 2, A Stawes ™ £l Bl 81
SW. - SW. »  sw. 2y =
0 Down 1 Down 2 Down n
2%b Ly y y
A ua 2K, A2, %, A2)
sw. |« sw. |« S.W.
2up ™| Bl Bl Bl
Fig. 6.7 The reduced model of subsystem A
reduced model there are only 18 states as against 32 states in the original model. 1
NI A0y 2 A2y, A A2
) W. N.W. W
The steady state equations can be written in the form . Ap B2 B2) N B2
= . m
P = B (5.9) n
where X AOJua 2%y Al 2y %y AZ
sw. | sw. | > s.w.
T=[Tu | T | Ty 2 =

T21 _l T22 T23

——— . Fig. 5.8 The state transition diagram of the system shown in Fig. 6.1

Ty | Ty | Ty
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Tas = 2 x Ty, (6 x 6 matrix)

Ty =0 (6 x 6 matrix)
N0
Ty = ——"-L—,——
0 | [
Tll = A_T21

T =A—Tp—Txn
and T33 = A —Tys

where
—(Qag + 1) Ha 0 m 0
Wg  —ug+tAg+n) 2w, 0 m 0
0 Aa —Qug +n) 0 0 m
A=
n 0 0 —2(\g + m) [ 0
0 n 0 27, —{ug + Ag + M) 2ug
0 0 n 0 g —Qug + m)

B = A column matrix with zero entries

P = {P(o,o)N,P(o.l)N, <. ,P(z,o)s,P(z,ns,P(z,z)s}

In the triple subscript of p the first two terms inside the parenthesis indicate
the state of the components in subsystems B and 4 respectively, e.g. (0,1)
denotes no component down in subsystem B and one component down in
subsystem 4. The subscript outside the parenthesis indicates the environment
state. Any seventeen equations of (5.9) with

M
M

Da, pe = 10
s

i=0 j=0 k=N,
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Table 5.1 Comparison of the results obtained from the reduced model and the
original model of the system shown in Fig. ]

Number Availability
of states of one identical
lumped in  Availability state obtained
Description  Availability each of one from the
of the of the environment identical non-reduced
lumped state lumped state state state model
O] @ (3) @ ®)
(0,0) 0-997155 1 0997155 0997156
©o1n - 0-567732x1073 2 0-283866x107%  0-283866x1072
(0,2) 0-172580x107 1 0-172580x10®  0-172580x107°
(1,0) 0227221107 2 0-113610x10™2  0-113611x1072
(1,1) 0-233858x107° 4 0-584645x107®  0-584645x107°
(1,2) 0-203460x107% 2 0-101730x107® 0-101729x107®
2,0) 0-212768x1075 1 0-212768x1075  0212769x107°
2,1) 0616139x107% 2 0-308069x107®  0-308070x107®
1

22 0-961824x1071 0961824x10™" 0-961873x107!!

may be solved to obtain the vector P of steady state availabilities. The results
obtained by solving this set of equations are shown in Table 5.1. In column one,
the first number inside the parentheses indicates the number of failed
components of subsystem 4 and the second in B. In column (2), the availabilities
of the normal and stormy states are merged together. Column (3) gives the
number of identical states in each environment state in the original model. The
values of column (4) are obtained by dividing the values in column (2) by those
in column (3). The results in column (5) are obtained by the analysis of the
complete model of 32 states. It can be seen that the results in columns (4) and
(5) have only very slight differences due to rounding off. Complete information
about the 32 states of the original system car thus be obtained by analyzing

the reduced model of 18 states.

State Space Truncation

It has been seen that the state space can be reduced by merging certain groups
of states. Another technique is by truncating the state space, i.e. by neglecting
the states whose contribution to the measures of system reliability is
insignificant. In systems consisting of independent components, the probability
of each state can be calculated individually by the product of the individual
component probabilities. The states required for determining the reliability
measures are selected, their probabilities calculated and the reliability measures
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obtained. The system states which make a negligible contribution to the final
results can be neglected.

When dependent transition modes are involved, the system state probabilities
cannot be obtained directly and the set of differential or linear algebraic
equations must be solved depending on whether time specific or steady state
solutions are required. Consider first the steady state condition.

The philosophy behind truncation may be understood by examining the
following equation for calculating the probability of the ith state

= Y Drli / Y A
REX" kEXT
The contribution to p; by a state k # i is

Pkkki/ Y M

kEX™

i.e. the frequency of encountering i from & divided by the total transition rate
out of /. Therefore if the states having low probability are deleted, the
probability of state i will not be significantly effected. The states have of course
to be deleted prior to solving the set of linear equations. The procedure amounts
to assuming that the deleted states have a probability equal to zero. Denoting
the set of deleted states by X, the probability of this subset if there were no
truncation is pp= Zp; . Since the probability of the rest of the state space is
ieXp
now one, i.e.

Di
E(X-X7)

the probability po-will be distributed over the states ie(X-X7) where X is the
system state space. If p is small, then the probability distribution of the rest of
the states will not be significantly affected. The success of the truncation
method depends upon selecting low probability states for truncation. The
following consideration should be kept in mind while employing truncation.

1. The probability pp ieXpis less than p., je(X-X. 7)- In words, the biggest
probability in the truncated subset should {)e less thdl’l the smallest probability
of the remaining state space. In systems consisting of two state components,
this is not hard to achieve. The state space may be divided into subsets, each
subset having states of a certain level of coincident failures. For a'system of n
identical components there will be (nt+1) subsets. These subsets will have the
following states:
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Subset number States description

1 All components up

2 One component down
ntl n components down

An arbitrary level of truncation should be first selected; for example the
states having three or more than three coincident failures can be truncated.
The computation can then be repeated by including the next subset, i.e. the
states having three coincident failures. If the new values are not significantly
different from the previous ones, the computation can be stopped, otherwise
one more subset should be included and the computation repeated.

If the units have derated levels or if there are more than one down state, for
example, repair and switching states, the same procedure should be adopted
with the addition that the states like switching associated with the repair state
should also be retained.

In the state space truncation technique, the probabilities of the states
adjacent to the truncation boundary are affected the most and the effect
decreases when moving away from the boundary.

2. After the states have been truncated, the state transition diagram should
be examined to see if the process of truncation has generated any absorbing
states. Since the computer program generates only the transition rate matrix,
the absorbing states can be located by examining this matrix. An absorbing
state will have transitions into it but not out of it. The jjth element of the
transition rate matrix gives the transition rate from state i to state j. Therefore
if the ith row is empty, this means that the ith state is absorbing. Either the
absorbing state should be deleted or the states where truncation has genemted
this absorbing state should be retained.

Example: . Consider a transmission system consisting of five links subjected to a
common two state fluctuating environment, normal and stormy weather are 32
states in each environment and a total of 64 states. The distribution of states in
each environment state is shown below.

Subset number 12 3 4 56
Number of elements

failed 01 2 3 45
Number of states 1 5 10 10 § 1

If, however, the probabilities of failure of three or more components can be
assumed to be zero, the states in subsets 4—6 can be ignored and the matrix of
transition rates is reduced from 64 x 64 to 32 x 32. A number of studies were
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performed on this system to test the sensitivity of the probability distribution
over the various system states to truncation. The results indicate that this
distribution is relatively insensitive to truncation. The results of a sample study
are shown in Table 5.2 along with the relevant component data. Table 5.2A
gives the availabilities of various states in the original model under different
component and weather state parameters. Identical environment states are
shown merged together. Tables 5.1B to 5.1E show the effects of truncation.
The limit of components on outage is indicated by MC, e.g. MC = 4 means that
the probability of failure of components more than four is zero. As can be seen
from Tables 5.1B — 5.1E, the percentage error is almost negligible. This error,
however, increases as MC decreases. It is obvious that the larger the number of
components, the less sensitive is the probability distribution to conditional
truncation. For a large transmission system, the system states can, therefore, be
conditionally truncated without causing any significant error.

Sequential Truncation

Sequential truncation can be described as the process of building the reliability
model by adding components or subsystems one by one and deleting the low
probability states at each step. This method consumes more computation time
than direct state space truncation but it is more manageable. In direct
truncation, the decision to delete states has to be made prior to the solution of
the state probabilities. In sequential truncation, the state probabilities are
calculated at each step and the states with probabilities less than a reference
value are deleted. The assumption, which is generally valid is that the
probability of a given state will be decreased after another component has been
added to the system. Assume that at a particular step the system has g states
designated S1 s S2 , ..., and a component having p states, designated C1 s Cz,
..., Cis added. If this component were independent from the system which
has been built up to this point, then there would be ¢ x p states in the resulting
system, there being p states for every state of the system up to this point. This
may be represented as

516 816G ... SiC,
5,61 8:C ... 5,
53C1 SiCr ... 855G,
S.C1 0 8Cr ... S.Go

Table 5.2  Studies of the sensitivity of the availabilities of various systems to be conditional truncation of system states

5

Number of identical components

Average failure rate

0-5/year

i

200 hours
1-5 hours

Normal weather mean duration

Stormy weather mean duration

A: Availabilities of all possible states

Number of

Number of identical
components states in

Group

the group  Availability of one identical state in the group

number down

=80

% Failures during S.W.

=20

% Failures during S.W.

225 hours

=
0993729

v = 10 hours
0:997203

¥ =5 hours
0:998598

225 hours

y=
0993611

¥ = 10 hours
0997154

v =5 hours
0-998576

0-568107x1073  0-127351x10  0-277285x10™> 0:551913x107®  0-123463x107

0-531820x107®
0-123808x1078

0-284518x107°

0-173558x107® 0213447x10™5  0-158411x10™°  0-366977x107°  0-960027x107°
0-354657x10™°

10

10

0-157760x107
0-368171x107®

0-517200x1077
14 0:302236x10713 0-198045x10712 0:439865x107!! 0-227601x107'° 0-108524x107°

0-985960x10™°

0-181082x1077

0-595186x107®

0-122932x10™ 0-535826x10711 0-287183x1071° 0-262773x107°

0-509552x10”

mean down time

y=



B: Percentage difference from the exact values, MC =4

Number of
Number of identical
Group components states in
number down the group % Difference from the exact values in Table A

% Failures during S.W. = 20

¥ =5 hours v =10 hours ¥ =22-5 hours
1 0 1 00 0-0+ 00
2 1 5 00 0-0 00
3 2 0 0-0 00 00
4 3 10 0-000013 0-000005 0-000009
5 4 5 0-004525 0-000022 0001343

C: Percentage difference from the exact values; MC =3

Number of
Number of identical
Group components states in
number down the group % Difference from the exact values in Table A

% Failures during S.W. = 20

v =5 hours v =10 hours v =225 hours
1 0 1 00 00 0-0
2 1 5 0-0 0-0 0-0
3 2 10 0-000009 0-000003 0-000003
4 3 10 0-002385 0-001277 0-000535

D: Percentage difference from the exact values, MC =2

Number of
Number of identical
Group components states in
number down the group % Difference from the exact values in Table A

% Failures during S.W. =20

v =5 hours v = 10 hours ¥ =22-5 hours
1 0 1 00 0-000001 0-000006
1 5 0-000001 0000002 0-000001
3 2 10 0-000466 0-000557 0000928

E: Percentage difference from the exact values, MC = 1

Number of
Number of identical
components states in
Group down the group % Difference from the exact values in Table A

number % Failures during S.W.=20

v = S hours v =10 hours v =225 hours
1 0 1 0-000174 0-000534 0-002139
2 1 5 0-000226 0-000194 0-002276

% Failures during S.W. = 80

v =5 hours v = 10 hours
00 0-0

0-0 0-0
0-000001 0-000001
0-000036 0-000050
0-002240 0-005604

% Failures during S.W. = 80

v =5 hours v =10 hours
0-0 00
0-000004 0-000001
0-000165 0-000035
0-007575 0-004306

% Failures during S.W. = 80

v =5 hours v =10 hours
0-:000018 0-000052
0-000065 0:000062
0-007762 0-009008

% Failures during S.W. =80

v =5 hours v = 10 hours
0-001583 0-003695
0-014940 0-013217

v =22-5 hours

00
00
00
0-000009
0-001617

vy =22-5 hours

0-000002
0-000003
0-000042
0-005267

v =225 hours

0000159

0-:000175
0-008023

v =22-5 hours

0-009718
0-016551
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The probability of state.S;C; will be the product of the probabilities of states
Si and C.. Since the probability of state C; cannot be greater than one, the
probability of §;C; will be always less than the probability of S;. Therefore if the
probability of stafe S is less than the reference value, the probability of Sl-C]-
will also be less than the reference value.

When, however, dependent transition modes are involved, some of the above
stage combinations may not exist. The probabilities of the resulting states will,
however, be generally less than those of the states prior to combination. The
method of sequential truncation will be illustrated by application to an example
system.

The system consists of three identical railway stations as shown in Fig. 5.9.
Each station has a station lane on which platform facilities are provided for
passenger disembarkation and a through expressway without any platform
facilities. When the station lane and through expressway are both down,
traffic cannot pass through and the system is considered failed. It is assumed
that under this condition, no further component failure takes place. The
guideway is assumed to be perfectly reliable. The results of this subsystem are
to be combined with the other subsystems and therefore the probabilities and
frequencies of various states of this system are to be determined. The failure
and repair rate of the station lane are denoted by A, and ug and those of the
expressway by A, and p,. The following numerical values have been used

1
Mean Up Time of the station lane = x = 800 Hours

s

Mean Down Time of the station lane = 1 = 2 Hours
lus

1
Mean up time of the expressway = x = 1000 Hours
e

1
Mean down time of the expressway = — = 2 hours
e

As the guideway is considered perfectly reliable, it can be left out of the
analysis. The state transition diagram of a station is shown in Fig. 5.10, U
stands for the up state, i.e. when both lanes are up. D means that the station
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S Station Lane
£ Expressway
G Guideway

Fig. 5.9. The subsystem functional diagram

b5y b

I U <——>I D o |<——>I 0 ]
us A ue  Ae s s

Fig. 5.10 The state transition diagram of a station

lane is down but the traffic can pass through the expressway. O denotes

the complete station outage, i.e. both lanes are out and O stands for partial
outage, i.e. the station lane is working but the through expressway is down.
These states can be represented in the computer as shown in Table 5.3A.
The addition of one more station is shown in Table 5.3B. For each state

of the component, there is the set of system states of Table 5.3A except
that state (3,3) is an impossible state since it means that the two stations
are completely out. This is not possible as the exposure to failure is reduced

to zero as soon as one station is completely out. The system states in Table 5.3B
are numbered in the serial order. The numbers in brackets indicate the
combination, the first number indicating the state number of the system before
addition and the second indicating the state number of the component being
added. Identical states can now be grouped together and the resulting description
is shown in Table 5.3C. The states with probabilities less than 107° are now
deleted and the resulting description is given in Table 5.3D. The state numbers
are the serial numbers and have no relationship to the state numbers in Table
5.3C.

When the third station is added, the resulting states are shown in Table 5.3E
and the states after merging identical states are given in Table 5.3F. The state
probabilities are also indicated. If more stations are to be added, then the states
with probabilities less than 107 can again be deleted and the procedure
repeated. The exact results, i.e. without any truncation, are shown in Table 5.4
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and it can be seen that the results are almost identical. In general, the results I8 D. Truncation of states with probabilities less than 1075
are slig}}ﬂy affected depending on the reference probability value employed for ‘ Number of stations
truncation. in state
System state UD 0 0 Probability
1 20 0 O 0-991051x10°
Table 5.3 2 11 00 0495525x10™
A. Model of a single station 3 1.0 1 0 0-992536x107%
Number of stations 4 10 01 0-396420x1 0:2

Identical states instate > 02 00 0-618994x1 0_2
System state from B UD 00 Probability ;) g (1) 8 ; gzgggggi } 8-5
:lz (1) (1) 8 8 E. Addition of the third station
3 00 1 0 Number of stations

in state
4 0 0 0.1 System state U D 0 O
B. Addition of a station - 1 30 0 0
1 (1,1) 20 0 O 2 2,1) 21 0 0
2 2,1 1 1 0 O 3 (3,1) 2 0 1 0
3 3,1 10 1 O 4 4,1) 2 0 0 1
4 4,1 1 0 01 5 (5,1) 1 2 0 0
5 (1,2) 1 1 0 0 6 (6.1) 1 1 0 1
6 2,2) 0 2 0 0 7 (7,1) 1 0 0 2
7 (3,2) 0 1 1 0 8 (1,2) 2 1 0 0
8 (42 01 0 1 9 (2,2 1 2 00
9 (1,3) 10 1.0 10 (3,2) 1 11 0
10 (2,3) o1 1 0 11 (4,22 1 1 01
1 4,3 0 0 1 1 12 (52) 0 3 0 0
12 (1,4 1 0 0 1 13 (6,2) 0 2 0 1
13 (24) 01 0 1 14 (7,2) 0 1 0 2
14 (34) 0 0 1 1 15 (1,3) 2. 0 1 0
15 44 0 0 0 2 16 (2,3) 1 1 1 0
. S 17 (43) 1 0 1 1(3,3)not possible

C. Merging of identical states 18 (5.3) 0 2 1 0
1 1 2 0 0 0 0-991051x10° 19 - (6,3) 0 1 1 1
2 2,5 1 1. 0.0 0-495525x107? 20 (7,3) 0o 0 1 2
3 39 1 0 1 0 0-992536x107° 21 (14 2 0 0 1
4 4,12 1 0 0 1 0-396420x1072 2 (24 1 1 0 1
5 6 0 2 0 O 0-618994x107° 23 (34) 1 0 1 1
[3 7,10 01 1 0 0-165058x1077 24 (4.4) 10 0 2
7 8,13 01 0 1 0-990308x107° 25 (54) 0 2 0 1
8 11,14 00 1 1 0-132036x1077 26 (6,4) 01 0 2
9 15 00 0 2 0-396090x107° 27 (74) 0 0 0 3
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F. Merging of identical states

System state

00~ Wb W

Identical states
from E

1
2,8
3,15
421
59
6,11,22
7,24
10,16
12
13,25
14,26
17,23
18

19

20

27

Number of stations
in state

U D 0 0
30 00
21 0 0
2 0 1 0
2 0 01
1 2 00
1 1 0 1
1 0 0 2
11 10
0 3 0 O
0 2 0 1
01 0 2
1 0 1 1
0 2 1 0
01 1 1
00 1 2
00 0 3

Table 5.4  Model of three stations without truncation

System state

00~ AN R W

State number
as in 5.3F

Deleted
Deleted
15
16

Number of stations
in state

UD 00
30 0 0O
21 0 0
2 0 1 0
2 0 0 1
12 0 0
1 1.1 0
1 1 0 1
1 0 1 1
10 0 2
0 3 0 0
o 2 1 0
0 2 01
o1 1 1
01 0 2
01 2 0
00 2 1
0 0 1 2
0o 0 0 3

Probability

0986606
0-739954x1072
0148435x10™
0-591964x107
0-184865x10™
0-295760x10™
0-118294x10™
0-493508x1077
0:153901x1077
0-369310x1077
0-295407x1077
0-394773x1077
0-461670x107*°
0-738569x1071°
0-295387x107%°
0-787643x107®

Probability

0-986606
0-739954x1072
0-148435x10™
0-591964x1072
0-184865x10™
0-493508x1077
0-295760x10™*
0-394773x1077
0-118294x10™
0-153901x1077
0-461824x1071°
0-369310x1077
0-738538x107%°
0-295407x1077
0-123121x107'2
0-984465x1071?
0-295264x1071°
0-787643x1078
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