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Appendices

Appendix I

Solution of simultaneous linear equations

Reliability evaluation often calls for the solution of a set of simultaneous linear
equations of the form

AX =B

where A4 is a nonsingular coefficient matrix and X and B are column vectors.
The results could be obtained using Cramer’s rule which proceeds by evaluating
determinants and expanding by minors. The system of # equations in n
unknowns takes on the order of #! multiplications. If n = 25 and each multipli-
cation takes 107® seconds, the computation time required would be several
million years. Several numerical methods have been devised to solve linear
equations. This book covers only the basic principles of Gauss-Jordan method
of elimination. Readers interested in further details should refer to one of the
many excellent books available on numerical methods.

The basic procedure of this method is quite simple. The first variable from
all but one of the equations is eliminated by adding an appropriate multiple of
this equation to each of the others. The second variable is then eliminated from
another equation in the same manner. The procedure continues until each of
the equations has only one variable left. The result can then be read directly.
This can be illustrated by solving the following set of linear equations.

xq +x; +3x;3 =4 1)
X1 =Xy +4x3 =5 2)
2% =X, +3x3 = 6 3)

Step I Remove x; from (2) and (3) by multiplying Equation (1) by (— 1)
and (— 2) respectively and adding

X1+ xp,+3x; =4 4)

1 ®)
" —3x, —3x3 = —2 ©)

—2x, + X3
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Step 2~ Remove x, from (4) and (6) by multiplying (5) by (}) and (—3)
respectively and adding to (4) and (6) respectively
xy+3x3 =3
=2, + x3 =1

[ - 1
2X3 T T2

Step 3 Remove x5 from (7) and (8) by multiplying (9) by () and (§) and
adding to (7) and (8) respectively

X1 =¥
—2x, = %
_%xa =—3
Step'4  The results can now be read
Xy = l9§
X, =%
X3 =3

In the computer, the operations are done in matrix form. The initial step is
to form an augmented array

4 | Bl

This in our present example is of the form

1 1 3 4
1 —1 4 N
2 -1 3 6

Row 1 is called the pivot row and the first element of this row is called the
pivot element. The procedure consists in setting the elements above and
below the pivot elements (diagonal elements) to zero.

First step. R1 (row 1) is the pivot row, a;; is the pivot element. Divide the
pivot row by the pivot element. Set elements below the pivot element to
zero by

Ry
Ry

R, —ayR1
Rs —auR1

M
®)
©)
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1 1 3 4

0o -2 1 1

o -3 -3 =2
The prime indicates the resulting row.

Second Step. R, is the pivot row and a,, is the pivot element. Normalize the
pivot row by dividing by the pivot element.

r 1 3 4
o1 -4 -4

Set the elements above and below the pivot element by
R'1= Rl —apR2
R'3= R3—~aynR2

1o 3 g
0 1 -~ -
o 0 -3 -}

Third Step. R; is the pivot row and 443 is the pivot element. Normalize the pivot
row by dividing by the pivot element.

1 0 3 3
0 1 -3 =i
0 o0 1 1

Set the elements above the pivot row by
R'l = R1—ay3R3
R'2 = R2—ay3R3

1 0 o 1
0o 1 0 —}
0 0 1 3
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The last column is the solution vector. It should be noted that special
pivoting techniques are available for avoiding rounding off errors. For details
of further refinements, books on numerical analysis should be consulted.

Appendix 11

Shape of the hazard rate function of two series stage combinations in parallel

The expression of the probability density function of this stage combination
as given in Chapter 6 is

(i)t (pax)= "
= —_— 1% 4 Rt JACAN—Ny T 1
f(x) = wi1p1 @ — D e @102 e (1)
The survivor function is
a; (plx)nAI ok ay (pzx)nvl
= - eTP1X 4 —Pyx 2
856 = w1 3 n—1)°¢ @ X =1 ° @

and the hazard rate function is

L]
Px) = 560
(i) At the origin
80 = fO
since
T S0) = 1

The following conclusions can be drawn regarding the magnitude of the hazard
rate at the origin

0 ifa;, >1, ay>1
© w101 ifa, =1, a,>1
¥0) =

W P2 ifa,; >1, a,=1

w1p1 T W2p2 ifay; =a, =1
(ii) The derivative of ¢(x) at the origin

F'E)S@) + ()
P x=0

= O+ {fO¥f

¢'(0) =

No
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w by the initial value theorem

F'0) = lim s[s/(s) —£(0)]

The expression for £(s) is

— P1 1 Py \2
) = w +w
(s) o+ P

The following conclusions can be drawn

@ a =a =1
Then

()~ f(0) = %4'?%_%*(@191 +wa02)

o @bl wpi

Therefore Prts pats

70) = lims[f Mvgﬁ’i]

§-re0 pr+s pats

and = —wp] — w03

¢'(0) = —wipt — wap} +(w1p1 + w202)

= —wywi(oy —p2)°

This expression is always negative and therefore for this condition, the

hazard rate is always initially decreasing. See curve 1 of Fig. 6.9.

) a; =1 and a, =2
= wipi o2V
s —f0) = ——— + s
s+py stpy
Therefore
£10) = lims{s/(0)=f(0)} = —wip} +w2p}
and

#'(0) = —wip} + w2p3 +(w1p1)

wz(P% - wlP%)

i

The sign will depend upon that of the quantity inside the parenthesis. This is

negative for curve 2 in Fig. 6.9 and therefore the hazard rate is initially
decreasing.

©

a; =2 and a, =1

#'(0) = wi(p] — w2p3)
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(d) ay =2 and a, =2

¢'(0) = f'(0) since f(0) =0
Therefore

¢'(0)

lim 5% f(s)
s
= wip} +wap}

The hazard rate is therefore initially increasing in this case. See curve 4 in
Fig. 6.9

() a; >2, ar >2
#(0) = lim s*7(s)
=0

The hazard rate is, therefore, initially constant as can be verified from
curve 5 of Fig. 6.9

) e =1 ad a >2
i = —ﬁl_pi P2\
SO0 = p1+s+w2s(S+pz)
Sli})r;s{sf(y)ff(o)} = — w0}

Therefore
¢'(0) = —w;ip} + (w101’
= —w wypt
(@ a >2 and a, =1
(f)l(o) = —wiwp}

In cases (f) and (g) the hazard rate is, therefore; initially decreasing as can be

seen from curve 3 of Fig. 6.9.

11T

(tmn p(x) as x > oo

@ p1 >0 .
éi_f)nm¢(x) = P2

) p2 > p

}i_t)nmda(x) = P
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© P =0
gi_rynwd)(x) = p1 = P2
The limiting value of the hazard rate as x becomes large is therefore always

the smaller of p; or p,.

The three quantities
ipx) as x>0
ii.g'(x) as x -0

and
iii.p(x) as x > oo

are enough to get an approximate idea of the shape of the hazard rate. A
knowledge of the behaviour of these quantities is helpful in making finer
adjustments in the shape of the hazard rate.

Appendix III

Hazard rate shape of series stages in series with a distinctive stage
(i) o¢x) at x =0
It can be seen by examining the ratio of Equations (6.69) and (6.70) that
#(0) = 0
@) ¢'(x) at x =0
As in Appendix I
¢'(0) = lims[s F&)— 1] + {0
= lim s*f(s) since f(0) = O
Pl
Now the Laplace transform of Equation (6.69) is
= o \* 1
f(s) - (p +s) p1t+s

Therefore

50 pp; if a=1
©0) = 4 )
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(iii) ¢(x) as x - oo
It can be proved by examining the ratio of Equation (6.69) and (6.70) that
pr i pi<p
lim ¢(x) =
xovee p if p <p

The final value is therefore the lesser of the two.

Appendix IV

Series stages in series with two parallel stages
Derivation of expressions

Designating the state whose duration is represented by this combination as O
and the state of not being in it as 4 the state transition diagram is shown in
Fig. IV.1

Fig. IV State transition diagram to derive expressions for the
stage combination

Assuming p;(0) = 1-0, the time spent in state O is identical with the time
since the origin and as explained in Chapter 6.

Jo(x¥) = p1P21(x) + p2p2a(x)

Solx) = igl pifx) + P21 (x) + poa (x)

and

Appendix IV
The differential equations for this system are
p1) = —pp1())
p2(®) = p(P1() —p2(1))

Pn(@® = p(Pn-i () —pa(0)

Pa(@) = p(0a-1(8) —pa(t)
p2u(t) = w1pPa() —pu®)p1
Pa(t) = w2ppo(t) = p2a(t) P2
Taking the Laplace transform of these differential equations

1
pi(s) = p+s
- P
172(5) - (p+s)2
Similarly
_
pn(s) - (p‘+s)"
_ pa—l
pa(s) - (P +S)a
- p )1
P2 () = wl(p+s) 5+ o,
and o
_ p
p2a(s) = wz(p-l—s) s+ pa
The inverse of Expression (2) is
_ et
pn(x) - (}'l—' ])!

For taking the inverse of Expression (4), it can be expanded into partial
fractions

© p Y1 Ny 4 N,
s) = w|—— =
Pz Wo+s) s+pr pt+s (p+s)P

N, M

+
(p+s) p1t+s

The numerators can be determined as
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‘ p\
M= + )2 emp = Wi |——
(p1 + P21 () s=—p, S Py

No = (0 + 9 P21()le=cp = w1p®
PP
and
" 1

Nawm = g P H P lsemp = (= D"0n0® s
Let

a—m = |
“Then

i 1
Ni = D enp® o o

Substituting these values into the expansion of p,; (s) and inverting

=px _

o N
palx) = 0-71( ) e Pix — w1 p®

1
—e
PPy (P“Pl)a
1 yi
o et g ©
(o —p1) (i—=n!
-1
=W pt L e P¥
p—py(@—1)!
A similar expression can be now easily derived from p,, (x) and finally

So(x) = polx) = n}; %;ic-_)j]_ie‘px +wl(pip1)

—wyp? P

n=1 (Vl*l)!
o N s o v Ho—po)xp™!
+w2(p_p2) [e P e P nzl —(n ”1)! ]

and
Jo(x) = par(®¥)p1 + Paa(x)p2

- o [ § oo |

p—pi nm1 (n—1)!

a a — ‘;n—l
) [e"sz P> ,.; {o (nliz);)" . ]

+ wa02
P P2

The Expression (8) could alternatively be derived using the fact that the
Laplace transform of the sum of independent random variables is the product
of their Laplace transforms. The probability density function of the random
variable X representing the state O is the sum of the random variables X, X,

O

®)
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denoting the states 1 to « and 21 and 22. The probability density function of

stages 1 toais

pex)* "
@11 "

_ _ p\
fi@s) = (p+s)

The probability density function of the parallel stages is

fikx) =

and

[20) = wipg e7P1F + wyp,y 6P
and the corresponding Laplace is

P1 P2
+ w,
p1ts p2ts

]

0]

Wy
Now

fo®) = fi(9)* f2(s)

Substituting the values and inverting, f;, (x) can be obtained. This is left as an

exercise for the reader.

The mean duration = The sum of the means
a W w
=L, %
P Py P2

Variance

The two random variables X; and X, are independent and therefore the
variance of X is the sum of the variances of X, and X,.

2 2 2
Variance = %-4— % %7 (ﬁ‘ﬂ+ E’})
b P1 1% P11 P2
= %4—2(2%-#&22—)7 814.&2
P PL P2 P1 P2
Shape Of The Hazard Rate
' f(0)
0)=-"==0
@ o0 S0)

(i) ¢'0) = lim $°f(5)
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Now
. o\ P1 P2
) = |— ) +w
76 (pﬂ) (wlpﬁrs 2p2+S)

wip1p + wWap2p if a=1
0 if a>1

¢'(0) = {

(iil) ¢(x) as x >
(@ p = min(p,p1,02), P F P1 F P2
Fx)x*teP*

;ilnw (x) = xlin‘}o :S’E;Ch)-/xafl o—P%

w (i_ﬂ)“[g(p‘_plﬂ]_i_(‘) ) (7.“3?)0[_ (Eﬁ_z)a_—_l_]
P\ = @— 1) TR | e

Tt e Yl G—p*! AR |
(a*l)!”‘(p—p,){ @1 ]*“’2(p—pz>[ (a*l)!]

_ PP1P2 ~p*(wips + wz02)
p1pz — p(w1p1 + wap2)

=p
(®) p1 = min(p,p1,p2), P F p1 F P2
feole ™™

lim ¢(x) = S(r)fePi*

PR
0-’1/71("—“)
PPy

P a
Wy
PP

= Py

(©) py = min(p,p1,02), P F p1 F P
lim ¢(x) = p2

(d) p = p1 = pa,the combination becomes a Special Erlangian distribution
having

lim ¢(x) = p

(&) p1 = p2 < p then

e \° o\
wip| | twp,
PP P P2
a a
Y SLIR A (.
p Py P~ Py

= wip1 T wip,y

lim ¢(x) =

= pP1 = P2
O ep=p <p
Then
lim ¢(x) = p
x> 00
It can be concluded from above that

;i_r)nwgb(x) = min (0,01, p2)

Appendix V

Moments of Stage Combinations
Series of Identical Stages

The Laplace transform of the probability density function is

fo = (sip)

Differentiating successively and substituting s = 0

7o) = 1Y ¢ 11 vk

r k
The rth moment is therefore

1
"k

jou ¥

m, = @+k—1)

1

Two Series Stages in Parallel

The rth moment in this case can be written as

Appendix V. 239



240  System Reliability Modelling and Evaluation

@1
o

my =
=1

_—

r wy T
H({l1+k‘1)+—; ]_[(a2+k41)
k=1 P2

Series stages in series with a distinctive stage
-~ (s Y[
o= (4 (5)

That is
(s +p)(s +p1) Fs) = p10°

Differentiating both sides
G+o)s+p) ')+ G +p)+ s+ =0

Differentiating once again
GHo6+p)T"E)+ 26 +p) +@+ Dis+p)] f'(9
+@+Dfs) =0

Differentiating r times
(+p)s+p)FO6) + irls+p)+ @+r—Ds+p)} ")
+r—D@+r—10)f"(4s) =0

Putting

s =0
and _

7O = (—1ym,
From Equation (1)

ppimy =ap;+p for r=1
From Equation (2)
ppimy, —{2p+ @+ Dpi1}my = —(@+1) for r=2
From Equation (3)
ppymy—{ro +@+r—Dpi}m,, +¢—D@+r—Dm._, =0
for r>2
In the matrix form
[4][m] = [B]
where

A = [ay] is the coefficient matrix such that

®

@

3

@
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0 if j>i or j<i—2

)
o
1

a; = ppy if i=]
—fip+@+i—1)p} if j=i—1

)
B
i

and

4y = (—Da+i—1) if j=i—2

o
my
m =
-ml'
o +apy]
—(@+1)
0
B =
L 0

The » moments can be found by solving the set of linear Equations (4).

Series stages in series with two parallel stages

This is equivalent to two ‘series- stages in series with a distinctive stage’ in
parallel. The rth moment for the whole combination is obtained by

[m] = [mi] + [ms]

[m, ]_ and [m, ] are found by equations,

[41[my] = [B4]

and

I

[42][m.] [B2]
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In this case

B 7
(o +ap1)wy
—(@+ 1w,

0
[8:] =

and

((p + apz)w;
~(@+ 1w,
0

Appendix VI

Calculation of the Jacobian Matrix for two series stages in parallel

Assuming ¢, and ,, the remaining three parameters p,, p, and w; can be
calculated by matching the first three moments. Therefore

Xo = [prop2owiol’, ¢ = [¢1¢,05]

The elements of the jth column of the Jacobian matrix can be obtained
by differentiating

i i
=S T @ +k=1)+2 [ @ +k—1)— 1
o k=1 P2 k=1
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That is
09; jw, L
0 RORT S
01 Pl k=1
9 jw, S
a%ﬁ’ = f;,% kH: (@ +k—1)
2 2 =
and
6 1 7 1 g
akj: S I @+k—1)—= II @+k—1)
Wy P1 k=L P2 k=t

Series Stages in Series with Two Parallel Stages

Assuming the number of stages to be a, the remaining four parameters, p,, ps,
p and w; can be calculated by matching the first four moments. The vector

¢ =m—M

where m and M are vectors of the stage model moments and the moments of
the distribution to be approximated. Since m = m,, + my,, the Jacobian of
¢ at Xy becomes

P'(Xo) = my(Xo) + mp(Xo)
mg(Xo) and my(X,) can be obtained by differentiating and solving

Aym, = B, and A,m, = B,

This solution can be obtained using Gauss elimination.



