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Executive Summary

This report recommends methods for pooling outage data in order to estimate indices that
describe generating unit and generating system performance. The three primary recommendations
of the report are summarized here.

Estimating generating unit performance indices requires different methods of pooling than
does estimating system performance indices. In order to emphasize this difference, the report
recommends that performance indices for system indices always include the word system. For

example the forced outage rate (FOR) of a system should be called the system forced outage
rate (SFOR).

In order to estimate unit indices, data from homogeneous units should be used. For

homogeneous units, estimators to be pooled should be weighted inversely proportional to their
variance.

In order to estimate system performance indices, the weighting of pooled estimators is chosen
in order to produce an unbiased estimator.

The report describes in some detail why the recommendations are made and how to
accomplish them,
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1. Introduction

Reliability and availability are important attributes of generating unit and generating system
performance. Monitoring and prediction of reliability and availability are important functions in
the operation, maintenance, and planning functions of electric utility organizations. This report
responds to questions raised by the staff of the North American Electric Reliability Council
Generating Availability Data System, NERC-GADS. The questions were related to technical and
statistical procedures to assess the reliability and availability of groups of generating units. NERC
maintains the Generating Availability Data System, GADS, on behalf of all US utilities and
participating Canadian NERC members. Data on the performance of over 90% of the installed
generating capacity in North America is maintained in GADS. These data are an important source
for monitoring generating unit reliability and availability by utility organizations. A Task Force
on Generating Unit Data Pooling was formed to respond to the questions. The questions were
related to technical and statistical procedures to assess the reliability and availability of groups of
generating units. A brief statement of the objectives set forth by the Task Force follows. This
report presents the findings of the Task Force.

1.1 Task Force Objectives

The general objective of the Task Force was to identify techniques to improve estimators of
reliability and availability, performance, indices of generating unit(s). The specific tasks included:

1. Identify criteria (e.g. homogeneity) for grouping generating units for estimating group
performance trends.

2. Identify techniques (e.g. weighting, censoring of outliers) of pooling performance data of
units in a group (e.g. a system) for estimating group performance indices.

3. Tllustrate the techniques applying to estimators of different types of performance indices of
generating unit(s) for different applications. There are two broad applications: monitoring
performance and predicting performance,

1.2 Background

Through industry associations, electric utilities have been collecting generating unit performance
data for more than 35 years. [1,2] The primary purpose of these data bases is to facilitate
estimation of specific performance indices for individual units and for groups of units of common
type. This effort has several applications to utility operations, maintenance and planning:



Monitoring Performance

- to compare performance of a specific unit with the average performance of similar
units within the industry to determine the potential for improvement.

- to monitor performance trends and changes created by unit and/or system design,
maintenance, and operational changes.

- to provide a reference for contractual capacity obligations and payments (actual
performance vs a reference).

- to provide a basis for rate incentives and penalties for performance of a unit or group
(system) of units (vs regional or industry averages).

Predicting Unit Performance
- to predict unit performance as input to planning studies.

- to predict performance of new units to be installed using component performance
data from similar units (as input to design studies or planning studies).

- to provide a basis for defining reliability/availability standards for units.

1.3  Performance Definitions

Performance data collection is based on a standard set of classifications of generating unit operating
and outage states (e.g. unplanned outage, planned outage, etc.) and deratings (e.g. unplanned,
seasonal, etc.). ANSI/IEEE Standard 762, 1987 provides the definitions of indices as well as the
terms related to operations, production, outage and derated states. [3]

1.4 Data Collection Systems

World-wide, generating unit performance data is gathered by utilities, pools, regions, nations and
international organizations for analyzing units as a group or groups and reporting their
performance trends. NERC-GADS has been cited previously, ERIS (Equipment Reliability
Information System)-Canada, UNIPEDE (Union Internationale Des Producteurs et Distributeurs
D’Energie Electrique) in Europe, and ORAP (Operational Reliability Analysis Program) are
examples of national and international data collection systems.



1.5 Existing Methods for Grouping Units

There are methods in current use for grouping units (e.g. by size range, fuel type, etc.) and for
pooling their data to estimate the group performance (e.g. straight averages, weighting certain
performance indices by unit size, etc.). These estimates of group indices are published by the data
collection agencies, typically every year.

This report emphasizes procedures for grouping units and pooling the data from these grouped
units. Hence, definitions of the terms grouping and pooling follow:

Grouping is the process of identifying, in a data base, a set of generating units which meet
specified criteria. The usual purpose of grouping units is to assemble data on generating
units which are homogeneous considering one or more attributes or characteristics such as
size, vintage, design, etc. for improved (i.e. smaller variance) estimation of a common
parameter. In some applications, the common attribute may be common ownership or
common operating control and the units are grouped for the purpose of estimating a system
performance index even if the units are not otherwise homogeneous.

Pooling is the process of aggregating the data sets from units having a known common
property to improve estimates of a common parameter.

1.6  General Approach to Improving Estimators

Good estimates of generating unit performance indices are essential for operations and design
evaluations and for system planning predictions. It borders on the trivial to observe that good
procedures for data collection are necessary, but not sufficient; good procedures for analysis of the
data are needed as well.

The general approach to improving estimators is to group units and pool their performance data.
More data reduce random errors and smooth out effects of extremes (good and bad performance).
Also, more data provide a large number of possibilities for classification of units, e.g. by geography,
by vintage, by fuel, by manufacturer. However, bias may be introduced due to pooling data from
dissimilar units, i.e. different by design or in operating and maintenance conditions. Also, estimates
may vary due to different ways of pooling.

The Task Force defines improvement in estimators to mean reduction of both uncertainty and bias,
and offers the observation that several techniques are available to improve estimators including; (1)
increase the base of data to reduce the uncertainty by combining data from different units, i.e.
pooling, (2) group units with common, i.e. homogeneous, characteristics to reduce uncertainty, (3)
weight data within groups to reduce bias and also uncertainty, and (4) censor highly extraordinary
data, i.e. outliers.

This report presents theoretical bases and practical approaches to improve procedures for estimating



performance indices of both generating units and systems of generating units from operating and
outage data. The Task Force submits that indices have been and must continue to be defined by
the applications. It should also be clear that the procedures for improving estimates of performance
indices must be selected specifically for the applications; there is no universal best procedure for
all performance indices.

1.7 Performance Indices

It is useful to review the purposes and uses of specific generating unit performance indices before
discussing a suitable method for pooling the generating unit performance data. For example, the
Forced Outage Rate (FOR) is used widely in generation system reliability and probabilistic
production cost studies. Indices including FOR, Availability Factor, (AF), and Unavailability
Factor (UF), are time-based indices and depend strictly on the cumulative time in specific states.
For example, FOR is based upon Forced Outage Hours and Service Hours while AF is derived
from Available Hours and Period Hours. On the other hand, the Gross Output Factor, GOF, is
a measure of the unit’s gross generation, an energy-based index.

The criteria for grouping types of units, for pooling unit data and for weighting need not, and
perhaps should not, be the same for all types of performance indices. Following this line of
reasoning, the Task Force submits that performance indices can be classified into the following
categories:

1.7.1 Unit Reliability and Availability Indices

These indices provide estimates of reliability and availability of a given class of generating units for
productive operation. Reliability encompasses measures of the ability of a generating unit to
perform its intended function. Mean Service Time to Forced Outage and Outage Frequency are
typical indices of reliability (outage duration is not considered). Availability measures are
concerned with the fraction of time a unit is capable of providing service, and account for outage
frequency and duration. Availability Factor, Planned Outage Factor, Maintenance Outage Factor
and Forced Outage Rate are used to measure availability.

1.7.2 Unit Productivity Indices

Productivity indices are concerned with the total energy produced by a unit with respect to its
potential energy production; productivity indices consider magnitude of outage as well as frequency
and duration of outage. The Gross and Net Output Factors belong to the category of indices
which are based on actual generation. Equivalent Availability Factor also belongs to this category
and is a measure of the generation that could be generated if limited only by outages and deratings.

1.7.3 System Performance Indices

System performance indices address groups of units. These indices provide general performance



measures, which can be used as bases or references in maintenance planning, reliability improvement
programs, etc. A plant Capacity Factor based on plant actual production and a System Equivalent
Availability Factor based on unit Equivalent Availability Factors weighted by unit maximum
dependable capacity are examples of performance indices developed for the specific purpose of
monitoring systems of units.

1.8 Monitoring versus Prediction

While application is outside the scope of this report, recognition must be given to the role that
application imposes on the choice of estimators for performance indices. There are two types of
applications which should be distinguished and which can affect the choice of estimator: estimators
for indices of past performance, i.e. monitors, and estimators for indices of future performance, i.e.
predictors. The former is in the realm of analysis, the latter in the realm of synthesis. Both are
rooted in the engineering application, but the requirements for the development of the estimators
for the same indices can be quite distinct between monitoring and prediction. For example, much
engineering discussion has been devoted to the benefits of different weighting methods for
combining the data from a group of units including: straight average and capacity weighted.
Usually, the examples and the objects are to form performance indices for dissimilar units as in a
generating plant or system and the arguments turn on the effectiveness of the procedure to provide
a satisfactory estimator for monitoring purposes. The discussion is appropriate to this point.
Problems arise where the discussion turns to the use of the procedure for improving the estimators
of groups of similar units as for example the fossil-steam size, type, age and fuel groups in the
NERC GADS. It does not follow that a procedure for grouping and pooling data from
homogeneous units designed to minimize bias and uncertainty of performance statistics for such a
grouping bears any relationship to procedures that provide the most satisfactory estimators to be
used as performance monitors for disparate units in a plant or system. For example, a plant
monitor derived from the capacity weighted combination of performance data from several units
should not be used to predict the effects of new unit installations with different mixes of units.
Prediction requires the ability to synthesize the estimates of performance indices for the individual
units. Synthesis requires the best estimators (least bias and uncertainty) for the individual units,
i.e., from the constituent parts.

The Task Force submits that the proper question to ask is rooted in the application. In essence,
data collection, analysis and estimation must have a purpose and defined parameter(s) to estimate.
With respect to the procedure for estimating unit performance indices from groups of similar units,
the procedure that minimizes both bias and uncertainty is the choice.

1.9 Report Summary

This report presents material on the following topics related to statistical methods and techniques
for improvement of estimators:



1.9

Report Summary (continued)

Possible ways of pooling data including the engineering or a priori considerations and the
pitfalls associated with improper pooling.

Methods of pooling and the associated statistical concepts, measures of goodness,
homogeneity, outliers.

Sample calculations to illustrate the effects of statistical methods on sample data sets.

Conclusions.



2. Possible W f Pooling D
2.1 Why Pool? Why Not?

As stated earlier, generating unit performance indices are estimated from recorded operating and
outage data for two different kinds of applications: (1) monitoring performance, and (2) predicting
performance. It is well known in statistics theory that the variance of an estimator is smaller for
a larger sample size. A smaller variance means that the estimator has a narrower distribution and,
therefore, the confidence level is higher that the estimate is closer to the true but unknown value
of the parameter. One way of increasing the sample size is to group units and pool data from
several groups of generating units. However, pooling may give misleading results if it is carried out
without due consideration to such factors as unit grouping, homogeneity, and applications.

In this chapter we first consider the case where predicting unit performance is the primary
application and the goal is to group units that are homogeneous in order that performance indices
can be estimated for certain types of units, e.g. an estimate of the forced outage rate of 60 MW gas
turbines. The chapter concludes by considering the case of pooling for monitoring performance of
systems consisting of units that are evidently not homogeneous.

2.2 Pooling Data for Predicting Unit Performance

The purpose of this section is to consider the case of estimating unit performance parameters. In
this case the primary goal is to estimate the parameters from homogeneous data. The inherent
problem of pooling data that are not homogeneous is the interpretation of the parameters estimated
from the pooled data. For example, if the availability factor were computed from the pooled
operating and outage data of coal-fired baseload units and peaking combustion turbine units, it
would be difficult or impossible to decide how to use the resulting estimated availability factor in
a planning study. Consequently this index is not used for planning. While this is an obvious
example, there may exist differences between groups of generating units that are not so obvious.
Hence, test procedures are needed to ensure homogeneity in the pooling process.

2.2.1 Homogeneity

Statistically speaking, & populations are homogeneous if the distribution functions are identical [4].
Conceptually the homogeneity test of generating unit performance data can be carried out in two
steps. First, the data samples to be tested must be obtained from a nominally homogeneous
group of generating units. In order to define what constitutes a nominally homogeneous group,
a set of criteria is needed which forms the basis for unit selection. This set of criteria may include
both design parameters (such as fuel type, boiler type, manufacturer, etc.) and operating
considerations (such as dispatch type, actual fuel burned, maintenance program, etc.). A discussion
of the relevant design and engineering considerations for formulating selection criteria is given in
the next section.



Operating and outage data from nominally homogeneous groups of generating units may not be
homogeneous in statistical terms. This problem is resolved in the second step in which statistical
tests are carried out to determine homogeneity. One possible statistical test for homogeneity is
described briefly in Appendix A. Details of this method are given in [5).

2.2.2 Generating Unit Grouping Criteria

Generating units have large numbers of design and engineering parameters that may be included
in grouping considerations. Typically, publications released by utility-sponsored data gathering
organizations in North America have based their reports on relatively few parameters which include
unit type, unit size, and primary fuel. This practice is continuing despite some concerns that other
parameters may be equally important and should also be considered. A recent literature survey
reveals that nearly 60 criteria had been considered in defining groups of fossil units. These criteria
were ranked by their number of appearances and significance given in these publications. The
results of this effort are given in Table 2.1 where the selection criteria are ranked in five levels.
Obviously, there are significant differences between parameters listed in this table and the traditional
parameters of unit type, size, and primary fuel.

While engineering judgment can define candidate criteria for grouping, statistical methods provide
a more objective test of the validity of groups. In a recent study conducted by NERC and
Southern Company Services, Inc. (SCS), a method has been developed for determining appropriate
peer unit groups and for benchmarking of unit performance indices [6]. This method is briefly
described in Appendix B.

It should also be noted that some of the criteria used in determining unit groupings, such as boiler
type or fuel type, are of the class type and can be easily applied; others, such as unit size or vintage,
are of the continuous type and must be defined by specified ranges. The ranges are usually

determined by engineering judgment, or they may be statistically validated as done in the NERC
and SCS procedure.

The above discussions clearly indicate that in practical applications it may not be possible to include
all the design and operating considerations in the grouping criteria. In other words, the analyst
may have to ignore certain (minor) aspects that are not homogeneous in a selected group of
generating units. The decision may depend on the particular application and/or the performance
indices to be estimated.



Table 2.1

A Sample Set of Criteria For Grouping Fossil Uni

(Compiled by NERC/SCS)
High Priority (#1) Low/Medium Priority (#4)
- Capital and O&M Costs - Turbine Combustion
- Vintage (Commercial Date) - Age
- Loading Characteristics (Actual - Air Preheater Type
vs. Design) - Ash Removal System
- Quality of Preventive Mainte- - Inside/Outside Boiler-Turbine Installation
nance Program - Technical Add-Ons (Scrubber)
- Service Factor or Service Hours - Design or Retrofit Scrubber
- Boiler Type (Sub vs. Super - Generator Manufacturer
Critical) - BFP Drive Type
- Primary Fuel (No Lignite) - Condenser Water Type

- Architect-Engineer
- Startup Attempt/Success Ratio
Medium/High Priority (#2)

- Boiler Manufacturer

- Turbine Manufacturer Low Priority (#5)
- Oil/Coal Coal/Oil Conversion
- Scrubber Vintage - Reheat (Single)
- Planned Outage Factor - Fuel Firing System

- Gas Recirculation Fan
Medium Priority (#3) - Condenser Tube Material

- Cooling Tower Type
- Unit Nameplate (MW) - ID Fan Type
- Furnace Draft - Opern/Closed Cooling System
- Balanced Draft Conversion - Condensing/Non-condensing Turbines
- Off-Spec Fuel Quality (Coal) - NERC Regions

- Scheduled Maintenance Cycle

- Multi-Turbine/Multi-Boiler

- Furnace Bottom Type

- Scrubber & Precipitator Type

- Output & Capacity Factors

- Steam Pressure & Temperature

- Furnace Volumetric/Surface Release Rates

- Service Hours per Startup

- Use of Spares in General (Mills, BFP, ID
and FD Fans, Scrubber Modules, etc.)



Generating unit operating and outage data usually consist of unit size (MW), period hours, the
number of startups, service (or operating) hours, derated operating hours, reserve shutdown hours,
forced outage hours, energy generated (MWH), and maintenance and overhaul hours, etc. In
carrying out homogeneity tests, perhaps it is neither practical nor necessary to test every set. Since
the majority of unit performance indices are derived from operating and forced outage hours, it
might be sufficient to test these two sets only. The effect of derated operations can be represented
by equivalent service and forced outage hours and included in the tests. If the operating and forced
outage hours from a group of generating units test homogeneous, these units can be assumed to
belong to the same population and, consequently, data pooling is permitted.

It is not uncommon that generating unit operating and outage data and, in some cases, unit
performance indices contain extremely large or small values. Extreme data points in the sample,
known as outliers, may unduly influence (bias) the analysis. Should they be included in or excluded
from the analyses? What factors should be considered? What are the options? These questions
are discussed in some detail in Section 3.3.

2.3 Pooling Data for Monitoring System Performance

Reliability and productivity indices have been used for many years to compare individual unit
performance against a group yardstick and for performance trending as diagnostics to indicate need
for maintenance and overhaul. A recent practice has been to develop performance measures for
systems, this requires the formation of reliability and productivity indices for collections of
heterogeneous units. Most recently, indices have been used as a part of Performance Evaluations
for independent suppliers of energy to establish rate incentives and for regulators to establish
incentives for utilities. An example may be drawn from recent actions of a Public Service
Commission [7]. Performance evaluations for the purpose of establishing rates and return on equity
were based on a weighting of several attributes including Customer Service Reliability and a System
Equivalent Availability Factor, SEAF. Benchmarks for each may be established in terms of utility,
area and national performance. SEAF is a performance index derived from the Equivalent
Availability Factors, EAF, for a heterogeneous mix of fossil-steam units of mixed sizes, fuels and
boiler types. SEAF is defined as the average of the EAF’s for fossil-steam electric generating units
for the prior twelve month period.

N

SEAF = X [EAF, J[I/N]

J=1
EAF, = (AH - (EPDH+EUDH+ESEDH))/PH
EAF = Equivalent Availability Factor for period
SEAF = System Equivalent Availability Factor for period
N = No. of fossil units on system during period
PH = Period hours
EPDH = Equivalent Planned Derated Hours for unit j
EUDH = Equivalent Unplanned Derated Hours for unit j
ESEDH = Equivalent Seasonal Derated Hours

10



The performance indicator SEAF measures the average percentage of time that the fossil steam
electric generating units of the system were ready and available to produce electricity during the
twelve month period ending with the evaluation date. This opens a question about interpretation
of the System Equivalent Availability Factor as a measure of the system capability to supply load
given that unit capability is not factored into the computation of the index. Strictly, if it were
desired for the index to reflect the system capability to supply load, then the equivalent availability
of each generating unit should be weighted by its maximum dependable capability:

N N
WSEAF ={Z[EAF]MDC}}/ Z[MDC]
j:] _]:1

WSEAF = Weighted System Equivalent Availability Factor
MDC,; =Maximum Dependable Capability for Unit j

It would appear that a capacity weighting to reflect system capability to serve load would be a
preferable system index to the unweighted, arithmetic average.

Let us compare the measures SEAF and WSEAF for the Favorite Light and Power Company’s
fossil-steam generating units. FLAPCO?’s availability data for 1991 are offered in the following
table.

UNIT NO 1 2 3 4 5
FUEL Oil Coal Coal Oil Oil
MDC MW 400 800 400 300 300
AH HRS 7000 6000 6500 7500 7600
EUDH HRS 400 500 800 500 300
EPDH HRS 0 500 0 0 0
PH HRS 8760 8760 8760 8760 8760
EAF % 75.3 57.1 65.1 79.9 833
FLAPCO
SEAF =172.14%

WSEAF = 68.54%

Comparing, SEAF measures the equivalent availability of the average FLAPCO unit while WSEAF
measures the equivalent availability of FLAPCO generation. SEAF is the percent time the average
unit is available to generate while WSEAF is the equivalent percent time that the system can
generate energy. For the FLAPCO example, SEAF would slightly overstate the system capability

11



to generate.

2.3.1 Statistical Considerations

The primary statistical consideration concerning generating unit data pooling for parameter
estimation when the goal is system performance comparison becomes finding an unbiased estimator
when the population is not homogeneous.

The difference between the pooled estimator from a homogeneous population and nonhomogeneous
one arises from the fact that in the former case, the individual subpopulations share the common
value of the parameter being estimated while in the latter case, a new composite parameter is being
defined by the analyst as a function of the individual subpopulation parameters.

For example, the availability factor of a nonhomogeneous group of units (e.g. a system) may be

defined as (note that the Sis added as a prefix to AFto indicate that this is a system parameter)

N, N, N,
SAF-— AF, + —% AF, v+ —L 4F,

where AF, is the parameter of subpopulation 7 and N, and N are, respectively, the sizes of
subpopulation 7 and the total population.

An unbiased estimator of SAFis

~ N N, . N,
SAF- N AF, + N AF, +-+ N AF,

where Af"‘l. is an unbiased estimator of AF,

In the above example the parameters of the subpopulations are weighted by N, /N . When
defining unit productivity indices, for example, the analyst may decide to use unit size as a
weighting factor. After the productivity index is defined, the purpose of the weighting is simply to
find an unbiased estimator of the defined index.

12



1. Statistical C Associated with Data Pooli

3.1 Introduction

As pointed out in earlier sections, application of indices has an important role in the choice of
factors that affect pooling of data. Applications, for this purpose, may be broadly classified as
either planning or monitoring of performance. Homogeneity of data is important when the indices
are to be used for predictive purposes as is the case in planning studies. When the indices are used
for monitoring or comparison of groups (e.g. system) performance, they may be obtained from
nonhomogeneous samples and apply to nonhomogeneous populations. This chapter considers the
methods for pooling data and associated statistical concepts for both homogeneous and
nonhomogeneous populations.

The objective of pooling data can be stated as follows. Assuming, the true, but unknown parameter
or index is designated as ©, the objective is to combine n estimators, él,éz,m,én into a
best estimator of ©. As an example consider n estimators of the availability factor, AF,
of a certain population of generators and call them AFl,AFZ,m,AFn. The objective then is
to combine Ai"l through A?’” to arrive at the best estimate of AF for the specified
population of generators. Another important consideration in pooling data is the recognition and

treatment of outliers. Difficulties caused by outliers and tests for their identification are discussed.
3.2 General Statistical Concepts for Pooling Estimators
3.2.1 General Form of Pooled Estimators

In any discussion of data pooling, care must be taken to see whether the population is
homogeneous or nonhomogeneous. In the case of a homogeneous population, the individual
subpopulations share the common value of the parameter being estimated. As an example of
homogeneous populations, the individual estimates AF,., of AF, may have different variances
but the same expectation. In the nonhomogeneous case the analyst defines a new composite
parameter as a function of the individual subpopulation parameters. This case frequently
occurs when a system parameter is to be estimated. The definition of this parameter may not
involve any ideas from the theory of statistical estimation but could be based on rational
Jjudgement. Asanexample, the availability factor for a system, i.e. a nonhomogeneous population,
can be defined as,

N N, N
AF--IVI AF1+WZ AF2+...+W" AF, )

13



where AF, is the parameter for generator type i, or subpopulation 4 and N, is the number of
generating units in the 7th subpopulation, N,=N, the number of generating units in the
system.

The composite parameter can be defined in many ways but this chapter will be limited to discussion
of pooling considerations to a weighted average. The pooled estimator for € will, therefore be
restricted to the linear form given by Equation (1).

In the case where each estimator is equally weighted this reduces to the simple average,

é-z_g ¥))]
n

That is, each weight is simply —l-
n

The next section describes the criteria for choosing the weights in Equation (2) such that the pooled
estimator is the best estimator of the index assuming that the population is specified.

3.2.2 Criteria for Good Estimators

Generally, by a good estimator we mean one with its distribution concentrated near the population
parameter being estimated. The well accepted criteria are (1) unbiasedness, (2) consistency, and (3)
efficiency.

Unbiasedness:
An estimator, 6, is an unbiased estimator of parameter, ©, if and only if

E[6]-6

where E indicates expected value.

Since © will vary from one sample to another, 8 cannot generally equal O, thus it seems
reasonable to choose © such that it is equal to © on the average. In other words if the expected
value of © isequalto ©, then © issaid to be an unbiased estimator, and otherwise it is said to
be biased.

Consistency:

When the sample size is increased one would expect the estimator to come closer to the true value.
An estimator is said to be consistent if the estimator approaches (with probability one) the

14



population parameter being estimated as the sample size increases.

EffTiciency:

If two estimators, éx and éz, are both unbiased estimators of ©, then it seems reasonable
that one chooses the estimator that deviated from © the least in some expected or average
sense. It is natural to choose to measure the expected deviation from the mean by the variance
of the estimator. Thus 6, is a better estimator than 6, if the variance of 8, is less than the

variance of 8 In general the estimator with smallest variance is said to be an efficient
estimator.

It may be concluded from the above discussions that the best linear estimator is an unbiased
minimum variance estimator.
3.2.3 Examples of Unbiased Minimum Variance Estimators

Estimator for the Mean

Let X,, X,,~,Xy be a population of size N. Then by definition the population mean is,

p,—— E X (3)

i-1

Let X,, X,,~, X, be a sample of size n, where n < N. The sample mean is

-1y x @

n g

It can be easily shown that
EX)-p

That is, the sample mean is an unbiased estimator of the population mean.

The variance of X

V®-2 ©)
n

2
where o~ population variance. We know from the Cramer-Rao inequality [8] that L s the
smallest variance of an estimator of X. Therefore the sample mean is an unbiased And least

variance estimator of the population mean.
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Estimator of Availability Factor

Availability factor, AF, may be considered to be a special case of the mean X where the variable,

X, takes on either 0 or 1 value. For example consider,

AF-— ©)
PH

Let there be N number of period hours, i.e.,
N=-PH

and let X;-1 when the generator is available and 0 when it is unavailable, then

N
AH-Y X, ™
i1
and
N
A F-ﬂ_u ®
PH N

It is to be noted that Equation (8) for availability is the same as the Equation (3) for mean except
that variable X, takeson values 0 or 1 only. Using the considerations for the estimator of X, it
can be shown that the availability estimator,

n
aF-y D ©)
i1
when X, =0 or 1, is an unbiased estimator of AF.

A derivation of the mean and variance of AF for a two state generating unit which is
operating continuously, assuming constant failure and repair rates, is given in Appendix C.

3.2.4 Best Pooled Estimators Using Samples from a Homogeneous Population

Assume that there are n independent estimators ©,, 8,, -, 8 of © and that each estimator

is unbiased. It is also assumed that the 7 th estimator, é,, has a variance of, i=1, -~ , n. A
pooled estimator of the following form is required
n
6-Y 09, (10)

i-1
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such that & is unbiased and minimum variance.
It is easy to show that the criterion of unbiasedness requires

i1

and the criterion of minimum variance requires, given that the él ’s are independent,

(12)

Equation (12) used in Equation (10) defines the best pooled estimator. The examples below
illustrate the application of these criteria in the case of five parameters from homogenous
populations.

In all five examples the population is assumed to be homogeneous; the sample is assumed to be
representative of the population; and the different generating units are assumed to be independent.
The data are from Table 3.1. With these data the objective is to estimate five indices of coal-fired
steam units for which units numbered 1 through 3 are assumed to be a representative sample.

We want to pool the estimators derived from these three units. In other words, we wish to
find w0, w,, and «, in the equation.

such that & is unbiased and minimum variance. The five examples differ only in the parameter
being estimated.

Example 1 - Estimate AF (Availability Factor)

It is shown in Appendix C that A?"i is unbiased and that the variance of AF , is approximately
proportional to the reciprocal of period hours. Thus using Equation (12)
PH,

-t =123
PH +PH,+PH,
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The estimate of AF is thus
7. 8760(.80)+8760(.68)+6000(.67) _

(2)8760+6000
_ 7000+6000+4000 _
(2)8760+6000
Y AvailableHours

Y PeriodHours

~7220r72.2%

Example 2 - Estimate FOR (Forced Outage Rate)

The individual estimators, FORi, are unbiased and the variance is approximately proportional to

reciprocal of observation time, i.e.

X k
Var[FOR)~————, i-12,3
SH+FOH,

where £, is a constant.

Thus
FOR- 7500(6.67)+7000(14.29)+4500(22.22) (100)
7500+7000+4500
__500+1000+1000 (100)
7500+7000+4500

Y OutageHours
)" (OutageHours+ Service Hours)

~132%

Example 3 - Estimate EFOR (Effective Forced Qutage Rate)
The variance of the estimator of effective forced outage rate is approximately inversely proportional
to observation time. Thus

k2
SH,+FOH +ERSFDH,

VarlEFOR )~

where £, is a constant.

Thus
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EFOR- 7800(11.54)+7000(14.29)+4900(36.73) (100)

7800+7000+4900
_ 500+400+1000+ 1000+800,100)
\

7800+7000+4900
Y (FOH+EFOH+ERSFDH)

Y (Outage Hours+Service Hours+Equivalent Reserve)
Shutdown Forced Derated Hours

~18.8%

Example 4 - Estimate CF (Capacity Factor)

In Appendix D it is argued, using some broad assumptions, that CF‘. is unbiased for CFand that
CF ; has a variance proportional to the period hours, PH,.
Thus

Clr. 760063)+BT60(68)+6000(54) | o
(8760)(2)+6000
2200+2400+1300 ;0.

400[8760(2)+6000]

Y Actual Generation

~62.7%
Capacity ) PH

Example 5 - Estimate MSTFO (Mean Service Time to Forced Outage)

2rMSTFO

If there are r observed failures, then will be approximately chi-squared distributed with

2r degrees of freedom. Thus STFO
n 2
Var[MSTFOi]-(MSTFO) Varlx2]
r
(MSTFO)* (MSTFO)*
- (4r)_
4r? r

d i 18 apploxmlately lIlVeISely pr oponlon ] tot i
and we haVe a| he n lll[ber [s) fa] ures

13
_ 7000+6000+3500
13

~1269

Y SH

)" Numberof Unplanned Outages
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Unit Number

Unit Type

Unit Size (MW)

Period Hours (PH)

Available Hours (AH)

Service Hours (SH)

Forced Outage
Hours (FOH)

Equivalent F.O.
Hours (EFOH)

ERSFDH

Number Unplanned
Outages

Actual Generation

(AAG) (GWH)

Availability Factor
(AF) - %

Forced Outage Rate
(FOR) - %

Equivalent FOR
(EFOR) - %

Capacity Factor
(CF)-%

Mean Service Time
To Forced Outage
(MSTFO)

Table 3.1

Example Generator Data for Estimating Pooled Parameters

1 2 3 11 12 21
[Coal Fired Steam ] [Gas Fired Steam] C.T.
400 400 400 300 300 50
8760 8760 6000 8760 7000 8760
7000 6000 4000 7500 5000 5000
7000 6000 3500 7000 5000 500
500 1000 1000 600 400 400
400 0 800 500 300 0
300 0 400 200 300 0
3 4 6 2 3 5
2200 2400 1300 1900 1500 22
Indices for the Individual Units
79.9 68.5 66.7 85.6 71.4 57.1
6.7 14.3 222 7.9 7.4 44.4
11.5 14.3 36.7 14.1 12.3 44.4
62.8 68.5 54.2 72.3 71.4 5.0
2333.33  1500.00 583.33 3500.00 1666.67  100.00
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3.2.5 Best Pooled Estimators for a Nonhomogeneous Population

If there are & generating unit types that make up the population (system) for which the index is to
be estimated, then the population is called nonhomogeneous. For example, the availability factor,
AF, of the entire generating system of Table 3.1 might be of interest. The generating system
consists of three 400 MW coal fired generating units, two 300 MW gas fired steam units, and one
50 MW combustion turbine, and we would call this an nonhomogeneous population.

The availability factor estimated from a nonhomogeneous sample may be of little value for use in
planning studies, but it can be useful for monitoring of performance. If this is the quantity to be
estimated then the criteria of unbiasedness is the primary criteria. If in the population there
are N, generating units from the first homogeneous subpopulation, N, generating units from
the second homogeneous subpopulation, etc., and finally N, units from the k th homogeneous
subpopulation, then the total nonhomogeneous population consists of

N-N,+N,+-.+N, generatingunits

If AF,. is the estimator of the availability factor of the 7th subpopulation, i-1,-,k, then it can be
shown that the unbiased estimator of SAF (system availability factor) is

~ N . N, N, .
SAF-WAFI+W,«1?"2+...+WAF,t
13
EN, (13)
'E —AF;
G N

Continuing the example described above using the data from Table 3.1 and using Equation (13) to
estimate the system availability factor, SAF .

SAF - %[.722]3{

+=[.57]((100
8760+7000 6[ 1j100

7500+5000] 1
6

~72.1%

where ".722" is calculated in Example 1.
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3.3  Outliers in Generating Unit Data Pooling
3.3.1 What to Do About Outliers

An outlier in a set of data is a sample (or a subset of samples) which appears to be inconsistent
with the remainder of the sample population. It can be either very large or very small in
comparison with the main body of samples. The presence of outliers raises the following questions:
(1) Are the outliers genuine members of the main population, or alternatively, are there errors in
measuring, recording or transmitting the data?(2) Do they cause difficulties in fitting the population
to a probability model? (3) In the case that no probability model representation of the data set is
sought, are the outliers significantly distorting the estimates of parameters to make us believe that
they do not belong to the main population?

Outliers may appear in the recorded data on the operating or outage times of a generating unit or
in the computed indices for generating units:

1. One or more entries of outage times may appear to be extremely long in comparison with
the rest of the outage data for a given generating unit. The long outage times are commonly
caused by unusual failure events of major equipment. In many cases, a serious equipment
failure traced to inadequate design may also lead to long planned outages of other units of
identical design to replace the equipment in question so as to avoid the occurrences of the
same type of failure. On the other hand, recorded entries of long operating times may either
indicate exceptional performance or non-compliance with reporting procedures.

2. One or more of the performance indices of a given generating unit (or units) is very low
(high) in comparison with those for the rest of the units in the data pool. The causes of
poor performance indices can be either unusual operating circumstances or serious
equipment failures during the period of interest, while high performance indices could be due
to usual operating circumstances or poor reporting procedures.

Note that the presence of outliers in these two places may not be correlated. In other words, the
presence of an outlier in the outage times of a given generating unit may not cause the computed
performance indices of this unit to become outliers among indices for all the units in the data pool.

The problem of how to carry out the data pooling process in the presence of outliers will be
examined pertaining to the questions outlined at the beginning of this discussion. Also, the
discussion will be limited to outliers in outage data only. Outliers of operating data can be treated
in a similar manner.

It has been a common practice in most outage data systems to have built-in checking mechanisms
in the data entry process so that errors or inconsistencies will be exposed and corrected. Therefore,
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we assume that there are no errors in the outage data to be pooled. In other words, the recorded
outage data are all members of the sample population. Therefore, the rejection of an outlier
depends on the need for a probability model and on whether it will significantly distort parameter
estimates.

In the case where a probability model of the data samples is required, serious considerations should
be given to the exclusion of outliers in order to obtain the best fit. For example, in generating
system reliability studies, the exponential distribution is often chosen to represent the uptimes and
downtimes of generating units for reasons of simplicity and tractability in the mathematical analysis.
One would have a strong argument to reject the outliers in the outage data for use in such studies.
Otherwise it may be necessary to select a different distribution which would be much more difficult
to handle in the mathematical analysis. Results of recent investigations have shown that, for
independent generators, the choices of outage data distribution models do not have significant effect
on the expected values of the reliability assessments [9].

When a probability model is not required, testing and rejection of the outliers can be considered
only if they significantly distort parameter estimations. However, the sample sizes of pooled data
of generating units are expected to be large, and the effect of the outliers on the average values of
the computed indices is likely to be insignificant. In the case where a particular set of outliers is
attributable to a cause which is known to be unlikely to recur, then these outliers can be rejected
in computing the performance indices of an average unit.

The next question to ask is: Should the procedure of detecting outliers be carried out for individual
units before data pooling, or should it be carried out for the pooled data? If the outlying data
samples of given generating units are known to be caused by some rare events, they should be
scrutinized before pooling. In the case where probability modeling is required, it seems to be logical
to pool the data first before testing for outliers. Obviously these are conflicting suggestions.
However, the major concerns of the Task Force on Data Pooling are the selection of minimum
variance, unbiased estimators for computing weighted average performance indices of generating
units and the formation of industry-wide standards. From these points of view, it is easy to decide
that outlying data samples should be examined before they are submitted to the pool.

To summarize, it is a subjective judgment on the part of the analyst whether or not to exclude the
outlying data samples in the analysis process. With regard to the concerns of this task force, it is
sufficient to suggest the following general guidelines.

L. Testing for outliers is recommended in cases where probability modeling of data is required.
2. Outliers may be examined and subsequently excluded from the data pooling process if they

are known to be caused by rare events, or if they can cause significant distortions in
parameter estimations (or in the computation of performance indices).
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3.

Examination of outlying data should be made for individual units before pooling.

3.3.2 A Test for Outliers

We describe a test for upper outliers. A simple method for such tests requires the assumption that
the data samples under examination follow a normal distribution with unknown mean and variance.
The test procedures are as follows:

Arrange the data samples in an ascending order, denoted by x;, x,,-x,.

1.

M

)
3

M
@

©)

Test for a single upper outlier:

Compute the test statistic T = (x,-x)s , where x is the sample mean and sis the sample
standard deviation.

Select an appropriate significance level (usually, either 5% or 1%).
Compare the value of T with the corresponding entry in a table for outlier testing (e.g.,

Table VII of Reference [7]), and reject the outlier if the value of Tis larger than the table
entry.

Test for & upper outliers:

Compute the test statistic T = (x,_y,p++ x,-kx)/s.

Select an appropriate significance level.

Compare the value of 7' with the corresponding entry in a table for multi-outlier testing
(e.g., Table IXa of Reference [10]), and reject the k samples as outliers if the value of 7 is
larger.
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4. Sample Calculations

Consider the data from a system composed of the units described in Table 4.1. How can these data
be "pooled” to estimate EAF and FOR in accordance with the recommendations of this report?

Strictly speaking, EAF and FOR are measures applied to units to be used for prediction and only
data from homogeneous units should be pooled. Without a detailed investigation of homogeneity
as described in Chapter 3, we assume that Units 4 and 5 can be grouped in a homogeneous group
and their data can be pooled. In this case because the period hours (PH) are the same for both
units, their EAF’s are equally weighted (see Section 3.2.3 of the report) and for 300 MW oil fired
units

EA

F-w (100) ~ 81.62%

In general, data would be weighted inversely proportionally to period hours (see Section 3.2.3).

In order to estimate the FOR for these homogeneous units the weighting should be proportional
to the reciprocal of observation time (Section 3.2.3 and Appendix C show that the variance of this
estimator is inversely proportional to the observation time), i.e. SH + FOH; thus for 300 MW oil
fired units

8410(34.6)+8660(41.11) , 1o
= { )
8410+8660

FOR

(2910+3560)(100)
5500+2910+5100+3560

~37.9%

While it is possible that Unit 1 might be grouped into a homogeneous group with Units 4 and 5,
the investigation of homogeneity is beyond the scope of these sample calculations. However the
procedure to decide about homogeneity is described in Section 2.2.1 of this report.

We now consider estimating system parameters to be used in performance comparisons. In this
case, this report implies:

*

Unit parameters, €.g. EAF and FOR, should not be estimated from data pooled
from non-homogeneous groupings.

The analyst (e.g. regulator, economist, utility system monitor) can define a system
parameter such as SEAF or WSEAF (see Section 2.3 of the report), and the
parameter can be estimated in order to arrive at a system performance measure.
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N
SEAF-L Y EAF,

Fl
Then for the system from Table 4.1

SEAF—% (75.34+57.08+65.07+79.91+83.33+91.21+5.00)(100)

~65.28%

WSEAF-Y

Fl

Y (EAFYMDC)

Y MDC,

i=1

Then for the system from Table 4.1

WisEiA - 125001.21) +800(57.08)+400(75.34+65.07]+300[79.91+83.33]+30(5.00) | oy
1250+800+2(400) +2(300) +30

~76.14%

Other weighted system performance measures such as NSEAF (New System Equivalent Availability
Factor) could be defined. Note that it is our strong recommendation that "S" be included in the
defined parameter in order to emphasize that it is a system parameter.

* System parameters should not be used to apply to a partial system, ¢.g. Units 6 and
7 of the sample system given in Table 4.1.

Finally, it should be emphasized that it is beyond the scope of this report to define which system
parameter is to be defined to measure system performance. Furthermore we believe that the choice
of parameter to measure system performance is not totally an engineering question, but other
considerations such as economics and politics must be considered.
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Table 4.1

Data of a Generating System for Sample Calculations in Pooling

Data

Unit Name Unit 1 Unit 2 Unit 3 Unit 4 Unit § Unit 6 Unit 7
Fuel Oil Coal Coal Oil Qil Nuclear C-T
MDC MW 400 800 400 300 300 1250 30
AH Hrs 7000 6000 6500 7500 7600 8000 20
EUDH Hrs 400 500 800 500 300 10 0
EPDH Hrs 0 500 0 0 0 0 0
SH Hrs 6800 6000 4000 5500 5100 8000 3
PO Hrs 744 100 744 350 100 0 150
FO Hrs 1216 2660 4016 2910 3560 760 247
PH Hrs 8760 8760 8760 8760 8760 8760 400
EAF%

Unit Level Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7
EAF% 75.34% 57.08% 65.07% 79.91% 83.33% 91.21% 5.00%
FOR%

Unit Level Unit 1 Unit 2 Unit 3 Unit 4 Unit § Unit 6 Unit 7
FOR% 15.17% 30.72% 50.10% 34.60% 41.11% 8.68% 98.80%
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5._Conclusions

Techniques for reviewing operational histories of individual electric generating units have been well
defined and readily applied in the utility industry. Efforts by IEEE and other international
technical organizations have led to standard terms, definitions, and calculation procedures for unit
performance indices.

Two primary applications of operational data are for:

1. Predicting or estimating parameters of unit performance to be used for planning new unit
additions to the electric system, operating existing units, and designing equipment for new
or existing units.

2. Estimating system performance indices to be used for supporting Regional evaluations, and
management or regulatory reviews.

This report recommends methods for pooling outage data from homogeneous units for predicting
unit parameters. Homogeneous units have similar design and operational characteristics such as
vintage, primary fuel, manufacturer, and capacity ratings. Testing to determine if the pooled group
of units is homogeneous is recommended in the report. This report discusses methods for predicting
performance indices such as Equivalent Availability Factor and Forced Outage Rate. One general
result of the report is that for homogeneous units, estimates to be pooled should be weighted
inversely proportional to their variance.

Monitoring the performance of a group of units that constitute an electric system or a sub-set of
a system is a common practice in the electric utility industry. Choosing which parameter to use to
measure system performance and which units to include may not be an engineering or an analytical
decision. Such a system is very likely to be comprised of units that are not homogeneous. If so,
this report recommends that the estimation of indices for non-homogeneous groups be done using

a weighting technique and the weighting is chosen to produce an unbiased estimate of the
defined performance parameter.

To clearly denote that the system is non-homogeneous, and that the index may not represent an
industry-wide group of units, the report recommends that indices for non-homogeneous groups
include a reference to the term system. An example of this would be that the Forced Outage Rate
would be represented as the System Forced Outage Rate.

This report is designed to clearly delineate the two major reasons for pooling estimators, and to
recommend the correct method for pooling in both cases.
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APPENDIX A
A Homogeneity Test Method

Tests of homogeneity are used to determine whether observations from different populations have
the same distribution. For the case of two populations the Kolmogorov-Smirnov two-sample test
is commonly employed. This statistic is difficult to apply to more than two populations. The SAS
uses an ad-hoc procedure to solve this problem by using the sum of the squared differences between
the empirical distribution function (EDF) and the pooled one (see SAS/STAT Guide Version 6, P.
718, 1987). However, this approach does not account for the dependency among the squared
differences. A new k-sample test method has been developed which is easy to apply and rectifies
the problem encountered in the SAS test. This method is briefly described in this Appendix. A
sample application to test the homogeneity of operating and outage data of generating units is also
presented.

The k-sample test of homogeneity proposed in [5] is based on comparisons between the empirical
distribution function (EDF) of each of the sampled populations with an estimate of the hypothetical
common distribution. The common distribution is estimated using a data set obtained by randomly
selecting half of the observations from each of the populations.

Let
n; =sample size of the 7 th population P, i~12,. k.
x; = th sample of P, j=1,2,.,n, and i-12, k.
n =Sumy(n).

Define

Number of &, < x | x; € P, }

n

F, ()~

Number of {x; < x | x; € P }
2

F_rg(x)'
2

n
2

Number of &x; < x | x; € P, }
n

F,(x)-
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where P,,is the data set obtained by randomly selecting half of the observations from each of the
populations and P, is the total pooled population.

The test statistic, .D, is defined as
D=sup | F, ()- Fx (1
2

The application of this homogeneity test method was illustrated in an example in which the uptimes
and downtimes of 4 nominally identical coal-fired units were tested. The sizes of the data samples
are as follows:

Unit # Sample Sizes of Sample Sizes of
Uptime Forced Qutage Time
1 960 66
2 879 76
3 762 70
4 849 75

Note that the sample sizes of uptimes and forced outage times for each unit are not equal because
of deratings and scheduled outages.

Following [5], a generalized Kolmogorov-Smirnov statistic, D, based on the EDF for half of the
pooled data, were computed for 500 random selections of half of the observations of each
population. The critical region of size 0.05 was selected which corresponds to 95% probability of
not making an incorrect decision. Accordingly, the critical level D, equals 3.285 and the
homogeneity hypothesis will not be rejected if D is smaller than 3.285, and rejected otherwise,

For the data on the forced outage times the computed values of D are lower than D, for all
random half samples, with the highest value of D=2.404. For the uptimes, the computed value of
D are also lower than D, , with the highest value of D=2.935. These results indicate that the
generating unit uptimes and forced outage times are homogeneous.

The estimated distribution function using the entire samples of all 4 populations can also be used.
In this case the statistic to be used is

sup, | F, () - F,)l

The sensitivity of this test will be less than the one using the randomly selected half of the pooled
data.
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APPENDIX B
An Approach to Determine Unit Groupings

This appendix describes a study, conducted by NERC and SCS [6], in which a method has been
developed for determining appropriate unit groupings based on design and operational data. The
purpose of determining the unit groupings is to prepare benchmarks of performance indices for
steam generating units. The performance indices to be benchmarked include:

1) Reliability - Equivalent Forced Outage Rate (EFOR)
2) Auvailability - Equivalent Availability Factor (EAF)
3) Maintainability - Scheduled Outage Factor (SOF)

Benchmarking is very important in today’s competitive environment. Utilities must be able to
assess how a unit’s performance compares to its peers so that aggressive, yet achievable cost-
effective goals for the generating units can be set. These goals can help local plant management
to recognize the need and opportunities for performance improvement.

The proposed approach utilizes GADS database which contains over 30 years of data on over 4,000
North American generating units.

Numerous design/operation factors were tested statistically to find the most appropriate peer group
for each unit. Once a peer group for a given unit was found, the unit’s overall performance was
compared against the distribution for the entire group.

Statistical comparisons were made of the distributions of unit performance parameters resulting
from design and operating factors including unit size, fuel type, boiler criticality, boiler/turbine
manufacturer, vintage, etc. The parameter which showed the largest statistical difference was

chosen as the primary criterion for unit grouping. This process is repeated until all the parameters
have been examined.

The EFOR index was used in the analysis to determine which design and operation factors were
the most important in selecting peer unit groups.

The first step was to perform a normality test on the variables EFOR and XEFOR. The variable
XEFOR is simply an arc sine transformation of the variable EFOR. This transformation is
performed to convert non-normal distributions into normal ones so that a more powerful
parametric test (analysis of variance) can be used.

The normality test results determine whether parametric or nonparametric significance tests would
be most appropriate.

If the normality test shows that the sample data can be considered normal, then parametric
procedures based on a normal distribution can be used. The method of least squares is used to fit
linear models.

A nonparametric procedure is used if the normality test shows that the data cannot be considered
normal (after the arc sine transformation). This procedure performs an analysis of variance on the

rank scores of a response variable (EFOR) across a one-way classification. The rank scores are
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functions of the ranks of the response variable (EFOR) , where the values are ranked from

low to high. The procedure also calculates linear rank statistics based on WILCOXON scores.
These statistics are used to test if the distribution of a variable has the same location parameter
across different groups.

In some instances it may be desirable to substitute EAF or SOF as the test variable.
The flowchart in Figure B.1 summarizes the analysis process.

The engineering and operating characteristics which are tested for significance in the analysis
process are tabulated below.

Vintage/age

Boiler manufacturer

Subcritical vs. supercritical boiler

Cyclone boiler fuel firing system vs. other
Once-through boiler circulation vs. other

Boiler draft (balanced vs. pressurized vs. converted)
Pressurized draft vs. other

Steam turbine manufacturer

Size of unit

Boiler reheat (double vs. single vs. none)

Double reheat vs. other

Generator manufacturer

Type of condenser cooling water

Precipitator vs. no precipitator

Type of precipitator

Electrostatic precipitator manufacturer

Mechanical precipitator manufacturer

Ratio of capacity to steam turbine nameplate rating
Reserve shutdown hours

Actual primary fuel

The analysis procedure described above was followed for each of the subject units. A peer group
consisting of similar units in North America was formed for each subject unit upon completion of
the analysis procedure. The homogeneity of the group for each performance
indicator (EFOR, SOF, and EAF) wasanalyzed. The purpose of the final analysis was to provide
statistical information, data distribution, and graphic data for each performance indicator.

To compare the performance of a test unit with that of its peer group, the distribution of the
performance indices for the group was presented in a graph. The performance index of the test unit
was marked on the graph to indicate its position in comparison with that of its peer group. An
example of the EFOR distribution obtained using this method are shown in Figure B.2. Similar

comparisons can be made for SOF, EAF, and other performance indices.
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NORMALITY TESTS -
NORMAL DISTRIBUTION
FOR EFOR OR XEFOR?

NO YES

HAVE NON-NORMAL
SPLITS ALREADY
OCCURRED?

YES NO

NONPARAMETRIC PARAMETRIC
SIGNIFICANCE TESTS - SIGNIFICANCE TESTS -
ANY SIGNIFICANT ITEMS? ANY SIGNIFICANT ITEMS?

NO YES YES NO
USE ENGINEERING
JUDGEMENT & OTHER
TESTS TO BREAK TIES

Y
WILL SPLIT BY MOST
SIGNIFICANT ITEM YIELD
AT LEAST 30 PEERS?

YES NO

WILL SPLIT BY MOST
SIGNIFICANT ITEM YIELD
AT LEAST 20 PEERS?

YES NO

Y
IS THE CHARACTERISTIC
VERY SIGNIFICANT
(p < 0.0050)?

YES NO

X
SPLIT BY THIS RETURN TO SIGNIFICANCE
CHARACTERISTIC TESTS STEP & TRY NEXT
& RETURN TO TOP MOST SIGNIFICANT ITEM

Figure B.1
Flowchart for Analysis of Characteristics for Unit Grouping
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APPENDIX C

Mean and Variance of AF,

Let X(® be a random (or stochastic) process that is 1 if X(®) is available and 0 if X(¢) is not
available. Partial outages or deratings are not considered in this elementary model. X(?) is then
modeled by the usual Markov failure and repair model where A is the constant failure rate and p
is the constant repair rate.

It is well known that

PIXO)-1XO)- 11—+ A -uon
B+A A+p

and

lim P[X()-1]-—F—
[l ] [J- +x

(S))
Furthermore, if the process is stationary, i.e.
P[X(0)~1]-—E—, then E[X(1)]-—F—
p+A B+A
(€2
In light of both (C-1) and (C-2) then the availability factor (AF) is defined by
AFo— ¥t
H+a
We seek to estimate AF by AF where AF is defined by
a1 T
AF-— [ X0
(C-3)

where T is the time period of observation, X9 is a sample function (one generating unit) of the
random process X(?).
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It is then easy to show that

E[AF]-—P__AF
p+A

(C-4)
That is, AF is an unbiased estimator of AF

The variance of A¥ is given by

Lifr pr B B
Var [A);] -E{F[ ]l; f; [X()- TH—).] [x@y)- ]dtldtz]}

p+d
- lle_Itl P.A. (u+ At gy
T
2uh [__ 1
T(p.+l)3|_ T(u+2)

1-e -(»*1)1)]

(C-5)
If T(p+1)>1 (typical values of p+A are of the order of 1 week™), then

Var[AF] Y

WA T

(C-6)
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APPENDIX D
Mean and Variance of C'F,.

Let
CF, = Capacity Factor
Y () = MW output of generator 7 at time ¢
ETY (0] = E[Output |Available] A(?)

where A(f) is the availability at time ¢
Call  E[Output|Available] 2 EO (1)

Note that expected output is a function of load, unit commitment strategy, economic dispatch as
well as unit capacity, C Assuming EO(t)-CK(f), that is, given that the unit is available, the
output is proportional to C, (unit capacity). Then,

ETY0]-CK®A®)

and

S 1 T
CF"F,.i [T ¥eoa
is unbiased if A(?) is stationary (as assumed) and if

1 1 =
E{? j; K@dd oK

is such that CF=AK.

Assuming K(f)-X then it can be shown that Var {CF} is proportional to 1 where T is the time
in the period. T
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APPENDIX E
Glossary of Statistical Terms
Bias (n), Biased or Biassed (adj)
If the expected value, Efg(x)}, of a statistic obtained from a random sampling, on the

R.V.(x) with the analytical transformation g(), is not equal to the parameter or quantity
being estimated, the statistic is biased.

Unbiased or Unbiassed (adj)

Converse of Biased; if the expected value, EY{ }, of a statistic obtained from a random
sampling is equal to the parameter or quantity being estimated, then the statistic is
unbiased.

Best Linear Unbiased Estimator (BLUE) (n)

A linear estimator 6 is called a best linear unbiased estimator (BLUE) for a
parameter € ifit is unbiased and has minimum variance among linear unbiased estimators,

Best Linear Invariant Estimator (BLIE) (n)

A linear estimator 6" is called a best linear invariant estimator (BLIE) for a
parameter © if it hasminimum mean squared error, E{(@""-6)%), amonglinear estimators.

Estimator (n)

A function of observations (or measurements) whose value is used as the (point) estimate
of a parameter.

Estimate (n)
The value of an estimator when the observations have specific numerical values.

Grouping (gerund)

Grouping is the process of identifying, in a data base, a set of (generating) units which meet
specified criteria. The usual purpose of grouping units is to assemble data on generating
units which are homogeneous considering one or more characteristics such as size, vintage,
design, etc. for improved estimation of a common parameter. However, in some
applications, all generating units in a utility may be grouped for the purpose of estimating
a performance index for the utility generating system even if the units are not homo geneous.

Homogeneity (n)

a) K populations are homogeneous if the distribution functions are identical.

b) K samples are homogeneous (in variance) if the individual sample variances
satisfly the homogeneity (equality) hypothesis G,=0,-..=0 . against the
alternative that some o,%¢ i
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Outlier (n)
a) An outlier is a data value that is far from the rest of the sample.

b) An outlier in a set of data is an observation (or subset of observations) which
appears to be inconsistent with the remainder of the set of data.

c) An outlier is an observation (or subset of observations) which appears to be
inconsistent with (‘deviates markedly from’) the remainder of the sample in
which it resides.

Pooled (adj) (Estimator of a Common Parameter Value)

Suppose that 6;,-,0% arestatistically independent BLUEsof ©. Also, suppose that their
variances can be expressed in terms of a common, (unknown) scale parameter o as

Var(8})-D, 0%, Var(§')=Dy o,

where the factors Dy are known. Then the pooled BLUE for © is:
6°-D[(8]/D))+..+(®/D ),

where
D-1/[(1/D))+..+(1/DY)], and Var(®@)-D o>

Note: Before using such a pooled estimator, one should check that the samples are consistent
with the assumption of a common © valye.

Pooling (gerund)

Pooling is the process of aggregating data sets with known common properties to form
improved estimates (BLUE) of a common parameter.

Definition Source Texts:

G. James and R.C. James, Mathematics Dictionary, D. Van Nostrand Co., Inc., Princeton,
N.J., 1959.

W. Nelson, Applied Life Data Analysis, John Wiley and Sons, N.Y., 1982.

T. Wright, Statistical Methods and the Improvement of Data Quality, Academic Press, Inc,,
Orlando, 1983.

G.J). Hahn and S.S. Shapiro, Statistical Models in Engineering, John Wiley and Sons, N.Y.
1967.

>

J.E. Freund and R.E. Walpole, Mathematical Statistics, 4th Edition, Prentice-Hall,
Englewood Cliffs, N.J., 1987.
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