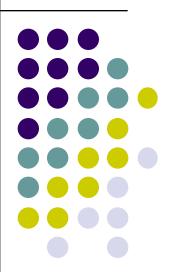
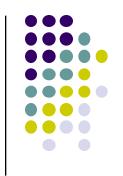
Module 4-2 Methods of Quantitative Reliability Analysis

Chanan Singh
Texas A&M University

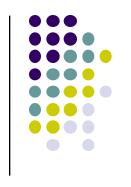


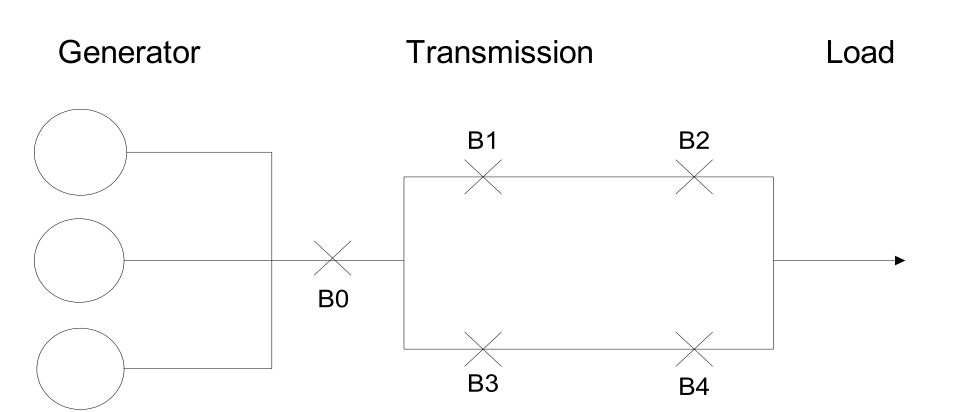
METHODS OF QUANTITATIVE RELIABILITY ANALYSIS



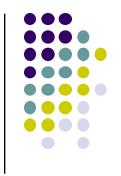
- ANALYTICAL METHODS
 - STATE SPACE USING MARKOV PROCESSES
 - NETWORK REDUCTION
 - MIN CUT SETS
- MONTE CARLO SIMULATION
 - NONSEQUENTAL RANDOM SAMPLING
 - TIME SEQUENTIAL
- CONCEPT OF RELIABILITY COHERENCE

EXAMPLE SYSTEM





EXAMPLE SYSTEM



Generators:

Each generator either has full capacity of 50 MW or 0 MW when failed. Failure rate of each generator is 0.1/day and mean-repair-time is 12 hours

Transmission Lines:

The failure rate of each transmission line is assumed to be 10 f/y during the normal weather and 100 f/y during the adverse weather. The mean down time is 8 hours. Capacity of each line is 100 MW.

Weather:

The weather fluctuates between normal and adverse state with mean duration of normal state 200 hours and that of adverse state 6 hours.

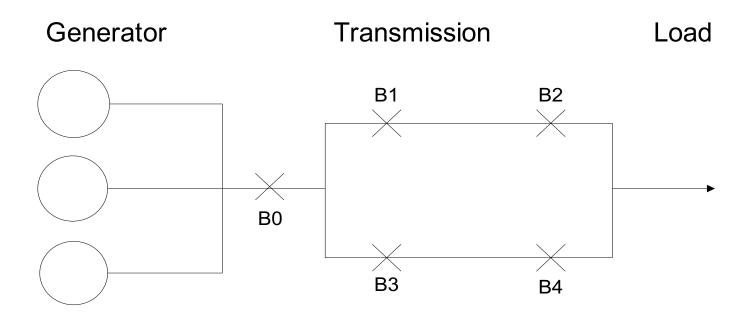
Breakers:

Breakers are assumed perfectly reliable except that the pair B1&B2 or B3&B4 may not open on fault on the transmission line with probability 0.1.

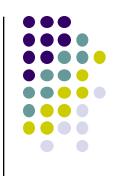
Load:

Load fluctuates between two states, 140 MW and 50 MW with mean duration in each state of 8hr and 16hr respectively.

EXAMPLE SYSTEM



- FOR THE DESCRIBED SYSTEM, HOW CAN YOU CALCULATE THE FOLLOWING BASIC RELIABILITY INDICES?
- Loss of load probability
- 2. Frequency of loss of load
- Mean duration of loss of load

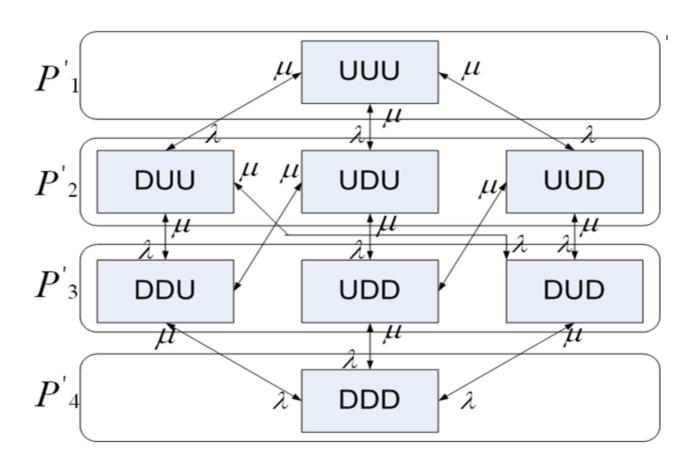


- 1. System State Description & Equivalents
- The first task is to obtain probabilities for the generators, transmission lines and loads, which are independent parts of the system.
- 1. 1. Generators



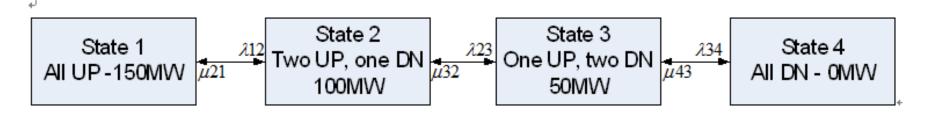
Each Generator has two possible states.

$$\mu = \frac{1}{\frac{12}{8760}} = 730 / year \qquad \lambda = 0.1 / day = 36.5 / year$$



State Transition Diagram – Generator System

Merging Identical Capacity States



Equivalent State Transition Diagram – Generator System

Equivalent transition rates:

$$\begin{split} \lambda_{12G} &= \frac{P_1 \lambda + P_1 \lambda + P_1 \lambda}{P_1} = 3 \lambda \\ \mu_{21G} &= \frac{P_2 \mu + P_3 \mu + P_4 \mu}{P_2 + P_3 + P_4} = \mu \\ \lambda_{23G} &= \frac{2P_2 \lambda + 2P_3 \lambda + 2P_4 \lambda}{P_2 + P_3 + P_4} = 2 \lambda \\ \lambda_{23G} &= \frac{2P_2 \lambda + 2P_3 \lambda + 2P_4 \lambda}{P_2 + P_3 + P_4} = 2 \lambda \\ \lambda_{23G} &= \frac{2P_2 \lambda + 2P_3 \lambda + 2P_4 \lambda}{P_2 + P_3 + P_4} = 2 \lambda \end{split}$$

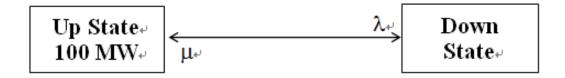
Transition rate matrix is:

$$R_{G} = \begin{bmatrix} -3\lambda & 3\lambda & 0 & 0\\ \mu & -(\mu + 2\lambda) & 2\lambda & 0\\ 0 & 2\mu & -(2\mu + \lambda) & \lambda\\ 0 & 0 & 3\mu & -3\mu \end{bmatrix}$$

• If we substitute values for μ and λ obtained in the beginning into above matrix, transition rate matrix for the generator system is:

$$R_G = \begin{bmatrix} -109.5 & 109.5 & 0 & 0 \\ 730 & -803 & 73 & 0 \\ 0 & 1460 & -1496.5 & 36.5 \\ 0 & 0 & 2190 & -2190 \end{bmatrix}$$

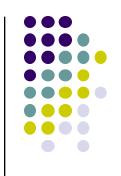
1. 2. Transmission Lines



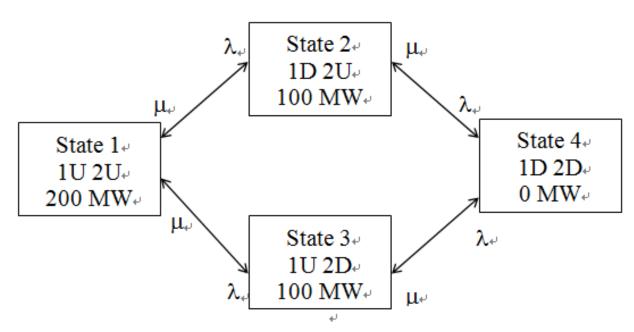
Each Transmission line has two possible states.

- During the normal weather $\lambda = 10 / \text{year}$
- During the adverse weather $\lambda' = 100 / year$

$$\mu = \frac{1}{\frac{8}{8760}} = 1095 / \text{ year}$$

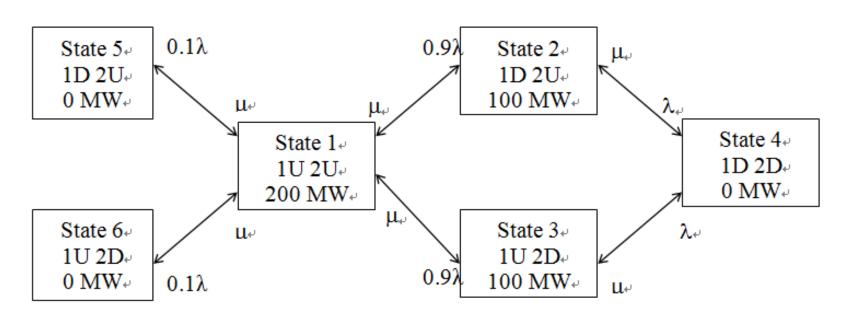


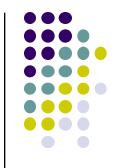
 If all the breakers are perfectly reliable, for the two-transmission-line system, there will be 4 states.



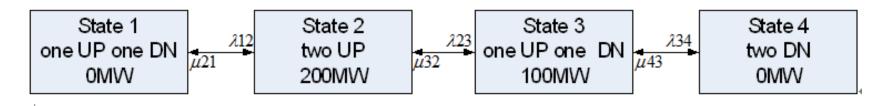
Four State Transition Diagram – Transmission System

If breakers may not open on command:





Merging of states:



Equivalent Four State Transition Diagram - Transmission System-

Equivalent transition rates:

$$\lambda_{12} = \frac{P_5 \mu + P_6 \mu}{P_5 + P_6} = \mu$$

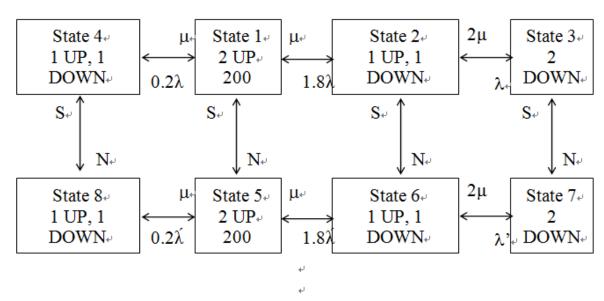
$$\lambda_{23} = \frac{P_1(0.9\lambda + 0.9\lambda)}{P_1} = 1.8\lambda$$

$$\mu_{32} = \frac{P_2 \mu + P_3 \mu}{P_2 + P_3} = \mu$$

$$\lambda_{34} = \frac{P_2 \lambda + P_3 \lambda}{P_2 + P_3} = \lambda$$

$$\mu_{43} = \frac{P_4(\mu + \mu)}{P_4} = 2\mu$$

1.2.1 Weather



Equivalent Eight State Transition Diagram - Transmission System

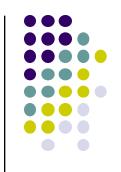
• Transition rate from normal weather to adverse weather is

$$N = \frac{1}{\frac{200}{8760}} = 43.8 / \text{ year}$$

Transition rate from adverse weather to normal weather is:

$$S = \frac{1}{\frac{6}{8760}} = 1460 / year$$

1



Transition rate matrix of transmission system is:

$$R_T = \begin{bmatrix} -(2\lambda + N) & 1.8\lambda & 0 & 0.2\lambda & N & 0 & 0 & 0 \\ \mu & -(\mu + \lambda + N) & \lambda & 0 & 0 & N & 0 & 0 \\ 0 & 2\mu & -(2\mu + N) & 0 & 0 & 0 & N & 0 \\ \mu & 0 & 0 & -(\mu + N) & 0 & 0 & 0 & N \\ S & 0 & 0 & 0 & -(2\lambda' + S) & 1.8\lambda' & 0 & 0.2\lambda' \\ 0 & S & 0 & 0 & \mu & -(\mu + \lambda' + S) & \lambda' & 0 \\ 0 & 0 & S & 0 & 0 & 2\mu & -(2\mu + S) & 0 \\ 0 & 0 & S & \mu & 0 & -(\mu + S) \end{bmatrix}$$

• 1.3 Load

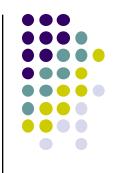
State Transition Diagram – Load

$$\lambda_{21} = \frac{1}{\frac{16}{8760}} = 547.5 / year$$

$$\lambda_{12} = \frac{1}{\frac{8}{8760}} = 1095 / year$$

Transition rate matrix:

$$R_L = \begin{bmatrix} -1095 & 1095 \\ 547.5 & -547.5 \end{bmatrix}$$



- 2 Steady State Probabilities, Frequency and Mean Duration of Loss of Load
- 2. 1. Generation System
- In order to get the steady probability of each state, we can write:

$$\begin{bmatrix}
P_{1G} \\
P_{2G} \\
P_{3G} \\
P_{4G}
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$$

$$\sum_{i=1}^{4} P_{iG} = 1$$

- Using the RG we obtained to solve above equation, we get the steady state probability of each state.
- If generators are independent probabilities can be calculated by product rule also.
- Probabilities calculated in either way are the same.

$$P_{u} = \frac{\mu}{\lambda + \mu} = 0.95238$$

$$P_{1G} = P_{u} * P_{u} * P_{u} = 0.8638377$$

$$P_{2G} = 3 * P_{u} * P_{u} * P_{d} = 0.1295725$$

$$P_{d} = \frac{\lambda}{\lambda + \mu} = 0.047619$$

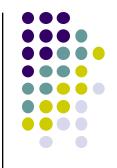
$$P_{3G} = 3 * P_{u} * P_{d} * P_{d} = 0.00647876$$

$$P_{4G} = P_{d} * P_{d} * P_{d} = 0.000107979$$

- 2. 2. Transmission System
- We have the following equations:

$$\mathbf{R}_{T}^{T} \begin{bmatrix} \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \\ \mathbf{P}_{4} \\ \mathbf{P}_{5} \\ \mathbf{P}_{6} \\ \mathbf{P}_{7} \\ \mathbf{P}_{8} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

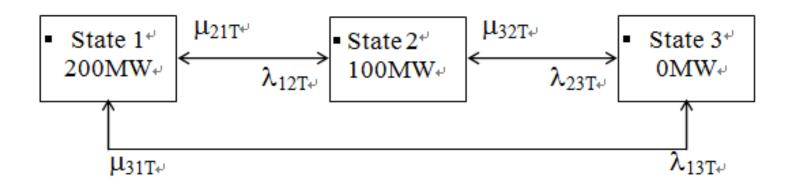
$$\sum_{i=1}^{8} P_i = 1$$



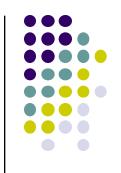
 Using the RT we obtained to solve previous equation, we get the steady state probability of each state:

$$P_1$$
=0.9507726 P_5 =0.02678843 P_2 =0.01787034 P_6 =0.002162378 P_3 =0.0001196528 P_7 =0.000060686 P_4 =0.0019820304 P_8 =0.00024383

 We can also reduce the eight-state transmission transition diagram to a three-state diagram with respect to the capacities of the states:



Equivalent Three State Transition Diagram – Transmission System



For the reduced model, the following results apply:

$$\begin{split} P_{1T} &= P_1^{'} + P_5^{'} = 0.9507726 + 0.02678843 = 0.97756103 \\ P_{2T} &= P_2^{'} + P_6^{'} = 0.01787034 + 0.002162378 = 0.020032718 \\ P_{3T} &= P_3^{'} + P_4^{'} + P_7^{'} + P_8^{'} = 0.0001196528 + 0.0019820304 + 0.000060686 + 0.00024383 \\ P_{3T} &= P_3^{'} + P_4^{'} + P_7^{'} + P_8^{'} = 0.0024061992 \end{split}$$

$$\lambda_{12T} = \frac{P_1^{'} \cdot 1.8\lambda + P_5^{'} \cdot 1.8\lambda^{'}}{P_1^{'} + P_5^{'}} = \frac{0.9507726 \cdot 18 + 0.02678843 \cdot 180}{0.97756103} = 22.439339$$

$$\mu_{21T} = \frac{P_2' \mu + P_6' \mu}{P_2' + P_6'} = \mu = 10$$

$$\lambda_{23T} = \frac{P_2^{'}\lambda + P_6^{'}\lambda^{'}}{P_2^{'} + P_6^{'}} = \frac{0.01787034 \cdot 10 + 0.002162378 \cdot 100}{0.020032718} = 19.714808$$

$$\mu_{32T} = \frac{P_3^{'} \cdot 2\mu + P_7^{'} \cdot 2\mu}{P_3^{'} + P_7^{'} + P_4^{'} + P_8^{'}} = 1095$$

$$\lambda_{13T} = \frac{P_1^{'} \cdot 0.2\lambda + P_5^{'} \cdot 0.2\lambda^{'}}{P_1^{'} + P_5^{'}} = \frac{0.9507726 \cdot 2 + 0.02678843 \cdot 20}{0.97756103} = 2.493259$$

$$\mu_{31T} = \frac{P_{4}^{'}\mu + P_{8}^{'}\mu}{P_{3}^{'} + P_{7}^{'} + P_{4}^{'} + P_{8}^{'}} = 2090$$

/

- 2. 3. Load
- The following equations apply:

$$\mathbf{R}_{L}^{T} \begin{bmatrix} \mathbf{P}_{1L} \\ \mathbf{P}_{2L} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \qquad \qquad \sum_{i=1}^{2} \mathbf{P}_{iL} = 1$$

 Using the RL we obtained to solve above equations we get the steady state probability in each state:

$$\begin{bmatrix} P_{1L} \\ P_{2L} \end{bmatrix} = \begin{bmatrix} 0.333333333 \\ 0.6666667 \end{bmatrix}$$

- 2. 4. Solution for the System
- Steady state probability, frequency and mean time of loss of load could be found using the following table:

$$P_{1G} = 0.8638377$$
 $P_{2G} = 0.1295725$
 $P_{3G} = 0.00647876$
 $P_{4G} = 0.000107979$

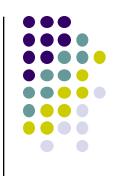
$$P_{1T} = 0.97756103$$

 $P_{2T} = 0.020032718$
 $P_{3T} = 0.0024061992$

$$P_{1L} = 0.33333333$$

 $P_{2L} = 0.6666667$

System State	Generation, transmission, load system state	Probability of system state	Transition to the states with loss of load	Loss of load
	,	,		
1	111	0.281485	2,3,4	No
			$(\lambda_{12T}, \lambda_{13T}, \lambda_{12G})$	
2	121			Yes
3	131			Yes
4	211			Yes
5	221			Yes
6	231			Yes
7	311			Yes
8	321			Yes
9	331			Yes
10	411			Yes
11	421			Yes
12	431			Yes
13	112	0.562969	15(λ _{13T})	No
14	122	0.0115367	2,15	No
			$\left(oldsymbol{\lambda}_{21L}, oldsymbol{\lambda}_{23T} ight)$	
15	132			Yes
16	212	0.0844453	4,18 $(\lambda_{21L}, \lambda_{13T})$ 5,18	No
17	222	0.0017305		No
			$(\lambda_{21L},\lambda_{23T})$	
18	232			Yes
19	312	0.00422226	7,21,22,	No
			$(\lambda_{21L}, \lambda_{13T}, \lambda_{34G})$ 8,21,23	
20	322	0.000086525		No
21	332			Yes
22	412			Yes
23	422			Yes
24	432			Yes
$\overline{}$				



- We can calculate the probability of states having no load loss. Those probabilities are obtained for the generators, transmission lines and loads as independent.
- From previous Table, we can get the steady state probability of the loss of load as follows.

```
P=1-
(0.281485+0.562969+0.0115367+0.0844453+0.0017305+0.00422226+0.00008
6525)
```

P=0.053524715

The frequency of loss of load is:

$$\mathbf{F} = \sum_{i \in X^{+}} \sum_{j \in X^{-}} P_{i} \lambda_{ij} = P_{1} (\lambda_{12T} + \lambda_{13T} + \lambda_{12G}) + P_{13} \lambda_{13T} + P_{14} (\lambda_{21L} + \lambda_{23T})$$

$$+ P_{16} (\lambda_{21L} + \lambda_{13T}) + P_{17} (\lambda_{21L} + \lambda_{23T}) + P_{19} (\lambda_{21L} + \lambda_{13T} + \lambda_{34G}) + P_{20} (\lambda_{21L} + \lambda_{23T} + \lambda_{34G})$$

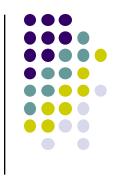
$$\mathbf{F} = 95.742635 / \mathbf{year}$$

Values needed for F that are calculated previously:

$$\lambda_{12T} = 22.439339$$
 $\lambda_{23T} = 19.714808$ $\lambda_{13T} = 2.493259$ $\lambda_{12G} = 3\lambda = 109.5$ $\lambda_{23G} = 2\lambda = 73$ $\lambda_{21L} = 547.5 / year$ $\lambda_{34G} = \lambda = 36.5$

The mean time of loss of load is:

$$MD = \frac{P}{F} = \frac{0.053524715}{95.742635/year} = 4.89726hours$$



- A cut set is a set of components or conditions that cause system failure.
 - A min cut set is a cut set that does not contain any cut set as a subset.
 - In this presentation a cut set implies a min cut set.
 - The term component will be used to indicate both a physical component as well as a condition.
- Components in a given cut set are in parallel, as they all need to fail to cause system failure.
- Cut sets are in series as any cut set can cause system failure.

Frequency & Duration Equations For Cut Sets

First Order Cut Set: One component involved

$$\lambda_{csk} = \lambda_i \qquad r_{csk} = r_i$$

where

 λ_i , $r_i = \text{Failure rate and mean duration of component } i_i$

 λ_{csk} , r_{csk} = Failure rate and mean duration of cut set k that contains component i_{c}

Frequency & Duration Equations For Cut Sets

Second Order Cut Set k:Two components involved

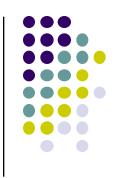
$$\lambda_{csk} = \frac{\lambda_i \lambda_j (r_i + r_j)}{1 + \lambda_i r_i + \lambda_j r_j} \qquad r_{csk} = \frac{r_i r_j}{r_i + r_j}$$

where

 λ_i, λ_j = Failure rates of components *i* and *j* comprising cut set k_i

 $r_i, r_j =$ Mean failure durations of components *i* and *j* comprising cut set k_i

Frequency & Duration Equations For Cut Sets



 Second Order Cut Set with Components subject to Normal and Adverse Weather.

 $\lambda_i, \lambda_i' =$ Failure rate of component *i* in the normal and adverse weather.

N, S = Mean duration of normal and adverse weather

$$\lambda_{csk} = \lambda_a + \lambda_b + \lambda_c + \lambda_{d},$$

$$\lambda_a = \frac{N}{N+S} \left(\frac{\lambda_i \lambda_j N r_i}{N+r_i} + \frac{\lambda_j \lambda_i N r_j}{N+r_j} \right),$$

$$\lambda_b = \frac{N}{N+S} \left(\lambda_i \frac{r_i}{N} \lambda_j' \frac{S r_i}{S+r_i} + \lambda_j \frac{r_j}{N} \lambda_i' \frac{S r_j}{S+r_j} \right)$$

$$\lambda_c = \frac{S}{N+S} \left(\lambda_i' \lambda_j \frac{N r_i}{N+r_i} + \lambda_j' \lambda_i \frac{N r_j}{N+r_j} \right),$$

$$\lambda_d = \frac{S}{N+S} \left(\lambda_i' \lambda_j' \frac{S r_i}{S+r_i} + \lambda_j' \lambda_i' \frac{S r_j}{S+r_i} \right),$$

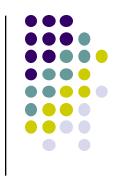
 λ_a = Component due to both failures occurring during normal weather.

 λ_b = Initial failure in normal weather, second failure in adverse weather.

 λ_c = Initial failure in adverse weather, second failure in normal weather.

 λ_d = Both failures during adverse weather.

Combining n Cut Sets



$$\lambda_T = \lambda_{cs1} + \lambda_{cs2} + \cdots + \lambda_{csn}$$

$$r_T = (\lambda_{cs1}r_{cs1} + \lambda_{cs2}r_{cs2} + \dots + \lambda_{csn}r_{csn})/\lambda_T$$

APPLICATION OF CUT SET METHOD TO EXAMPLE SYSTEM

 Cut set 1: One line failure and breaker stuck.

$$\lambda_{av} = \frac{\lambda N + \lambda' S}{N + S} = 12.621$$

$$\lambda_{cs1} = 2 \times \lambda_{av} \times 0.1 = 2.524 f / y$$

$$r_{cs1} = 8hr$$

 Cut set 2: One generator failure and load changes from 50 to 140

$$\lambda_g = 0.1/day = 36.5/year$$

$$\lambda_{load} = \frac{8760}{16} = 547.5 / year$$

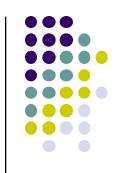
$$r_g = 12hr = .00137yr$$

$$r_{load} = 8hr = .000913yr$$

$$\lambda_{cs2} = \frac{\lambda_g \lambda_{load} (r_g + r_{load})}{(1 + \lambda_g r_g + \lambda_{load} r_{load})} = 88.306 / yr$$

$$r_{cs2} = \frac{r_g r_{load}}{r_g + r_{load}} = 4.8hr$$

APPLICATION OF CUT SET METHOD TO EXAMPLE SYSTEM



 Cut set 3:One line failure (breaker not stuck) and load changes from 50 to 140.

$$\lambda_l = \lambda_{av} \times 0.9$$
$$r_l = 8hr$$

$$\lambda_{cs3} = \frac{\lambda_l \lambda_{load} (r_l + r_{load})}{(1 + \lambda_l r_l + \lambda_{load} r_{load})} = 15.03 / yr$$

$$r_{cs3} = \frac{r_l r_{load}}{r_l + r_{load}} = 4hr$$

- Cut set 4: Two lines fail(breaker not stuck)
- For each line

$$\lambda = 10 \times .9 = 9 / yr$$
 $\lambda' = 100 \times .9 = 90 / yr$
 $r = 8hr = .000913 yr$
 $N = 200hr = .022831 yr$
 $S = 6hr = .000685 yr$

 Applying the equation for second order cut set exposed to fluctuating environment,

$$\lambda_{cs4} = .3888 / yr$$
$$r_{cs4} = 4hr.$$

APPLICATION OF CUT SET METHOD TO EXAMPLE SYSTEM

- Cut set 4: Two lines fail(breaker not stuck)
- For each line

$$\lambda = 10 \times .9 = 9 / yr$$

 $\lambda' = 100 \times .9 = 90 / yr$
 $r = 8hr = .000913 yr$
 $N = 200hr = .022831 yr$
 $S = 6hr = .000685 yr$

 Applying the equation for second order cut set exposed to fluctuating environment,

$$\lambda_{cs4} = .3888 / yr$$
$$r_{cs4} = 4hr.$$

For the system

$$\begin{split} \lambda_T &= \lambda_{cs1} + \lambda_{cs2} + \lambda_{cs3} + \lambda_{cs4} = 106.25 / yr \\ r_T &= \frac{(\lambda_{cs1} r_{cs1} + \lambda_{cs2} r_{cs2} + \lambda_{cs3} r_{cs3} + \lambda_{cs4} r_{cs4})}{\lambda_T} = 4.76 hr \\ \mu_T &= \frac{1}{r_T} \end{split}$$

Frequency of failure =
$$\frac{\mu_T}{\lambda_T + \mu_T} \lambda_T = 100.45 / yr$$

Probability of failure =
$$\frac{\lambda_T}{\lambda_T + \mu_T} = .0546$$